Task-Friendly Underwater Image Enhancement for Machine Vision Applications

计算机科学 水下 计算机视觉 机器视觉 任务(项目管理) 人工智能 遥感 地质学 工程类 海洋学 系统工程
作者
Yu Meng,Liquan Shen,Zhengyong Wang,Xia Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2023.3340244
摘要

Underwater images are often affected by color cast and blurring, which degrade the performance of underwater machine vision tasks. While existing underwater image enhancement (UIE) methods have been proposed to improve image quality for human perception, their effectiveness in enhancing machine vision performance is limited. In this article, a novel unsupervised UIE framework based on disentangled representation (DR) is proposed, which is designed for machine vision tasks. Specifically, the proposed framework disentangles the underwater image into two parts in the latent space according to whether they are beneficial to machine vision tasks: the task-friendly content features and the task-unfriendly distortion features. In addition, a semantic-aware contrastive module (SACM) is employed to alleviate the impact of losing key information required for machine vision tasks using the strategy of contrastive learning. Furthermore, two branches on the features and images are incorporated into the enhancement network, which serve the purpose of delivering task-relevant information to the enhancement model and guide the network to generate task-friendly images. Evaluation of the proposed method is conducted on multiple underwater image datasets, and a comparison is made with state-of-the-art enhancement methods in terms of machine vision performance. The experimental results demonstrate that the proposed method surpasses existing approaches in improving the accuracy and robustness of machine vision tasks, including object detection, semantic segmentation, and saliency detection in underwater environments. Our code is available at https://github.com/gemyumeng/TFUIE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
理工完成签到,获得积分10
刚刚
乐乐完成签到,获得积分10
1秒前
赘婿应助鹿茸采纳,获得10
1秒前
17808352679完成签到,获得积分20
1秒前
1秒前
3秒前
嗯哼完成签到 ,获得积分10
3秒前
3秒前
PANGHU发布了新的文献求助10
3秒前
上官若男应助我心如铁石采纳,获得10
3秒前
理工发布了新的文献求助10
3秒前
123发布了新的文献求助30
4秒前
4秒前
chen完成签到,获得积分20
4秒前
严怜梦完成签到 ,获得积分10
4秒前
领导范儿应助einuo采纳,获得10
4秒前
浩浩大人发布了新的文献求助10
4秒前
找不到发布了新的文献求助10
4秒前
欣喜访旋发布了新的文献求助10
4秒前
Yolo发布了新的文献求助10
4秒前
lanlan完成签到,获得积分10
4秒前
帅冰冰冰完成签到,获得积分10
5秒前
Orange应助liyi采纳,获得10
5秒前
dsjlove完成签到,获得积分10
5秒前
QJL完成签到,获得积分10
5秒前
tyty完成签到,获得积分10
6秒前
Yuki0616发布了新的文献求助10
6秒前
6秒前
小汪发布了新的文献求助10
6秒前
6秒前
会游泳的鱼完成签到,获得积分10
6秒前
杨天水完成签到,获得积分10
7秒前
miaoww发布了新的文献求助10
7秒前
妙aaa完成签到,获得积分10
7秒前
7秒前
李健的小迷弟应助xiaoming采纳,获得10
7秒前
瘦瘦白昼完成签到 ,获得积分10
8秒前
Hey完成签到,获得积分10
9秒前
抽屉里的砖头完成签到,获得积分10
9秒前
雪白元风完成签到 ,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672