已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Task-Friendly Underwater Image Enhancement for Machine Vision Applications

计算机科学 水下 计算机视觉 机器视觉 任务(项目管理) 人工智能 遥感 地质学 工程类 海洋学 系统工程
作者
Yu Meng,Liquan Shen,Zhengyong Wang,Xia Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:19
标识
DOI:10.1109/tgrs.2023.3340244
摘要

Underwater images are often affected by color cast and blurring, which degrade the performance of underwater machine vision tasks. While existing underwater image enhancement (UIE) methods have been proposed to improve image quality for human perception, their effectiveness in enhancing machine vision performance is limited. In this article, a novel unsupervised UIE framework based on disentangled representation (DR) is proposed, which is designed for machine vision tasks. Specifically, the proposed framework disentangles the underwater image into two parts in the latent space according to whether they are beneficial to machine vision tasks: the task-friendly content features and the task-unfriendly distortion features. In addition, a semantic-aware contrastive module (SACM) is employed to alleviate the impact of losing key information required for machine vision tasks using the strategy of contrastive learning. Furthermore, two branches on the features and images are incorporated into the enhancement network, which serve the purpose of delivering task-relevant information to the enhancement model and guide the network to generate task-friendly images. Evaluation of the proposed method is conducted on multiple underwater image datasets, and a comparison is made with state-of-the-art enhancement methods in terms of machine vision performance. The experimental results demonstrate that the proposed method surpasses existing approaches in improving the accuracy and robustness of machine vision tasks, including object detection, semantic segmentation, and saliency detection in underwater environments. Our code is available at https://github.com/gemyumeng/TFUIE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cj发布了新的文献求助10
刚刚
SuyingGuo发布了新的文献求助10
3秒前
Wecple完成签到 ,获得积分10
4秒前
6秒前
6秒前
RRReol发布了新的文献求助10
7秒前
FF完成签到,获得积分10
8秒前
周大福完成签到 ,获得积分10
10秒前
嗨皮牛耶发布了新的文献求助10
11秒前
8R60d8应助木之尹采纳,获得10
11秒前
12秒前
CHEN发布了新的文献求助10
13秒前
大个应助核桃采纳,获得10
13秒前
英姑应助核桃采纳,获得10
13秒前
小蘑菇应助核桃采纳,获得30
13秒前
天天快乐应助核桃采纳,获得10
13秒前
思源应助核桃采纳,获得30
13秒前
科目三应助核桃采纳,获得10
13秒前
情怀应助核桃采纳,获得10
13秒前
桐桐应助核桃采纳,获得10
13秒前
NexusExplorer应助核桃采纳,获得10
13秒前
13秒前
所所应助核桃采纳,获得10
13秒前
ASHhan111完成签到,获得积分10
14秒前
马敏完成签到 ,获得积分10
14秒前
鱼鱼完成签到,获得积分10
18秒前
18秒前
18秒前
ocdspkss发布了新的文献求助10
20秒前
杨一一完成签到 ,获得积分10
20秒前
大胆的琦发布了新的文献求助10
21秒前
认真之槐完成签到 ,获得积分10
21秒前
ding应助核桃采纳,获得10
22秒前
传奇3应助核桃采纳,获得10
22秒前
赘婿应助核桃采纳,获得10
22秒前
大个应助核桃采纳,获得10
22秒前
酷波er应助CHEN采纳,获得10
23秒前
科研通AI2S应助核桃采纳,获得10
23秒前
搜集达人应助核桃采纳,获得10
23秒前
Ava应助核桃采纳,获得30
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497941
求助须知:如何正确求助?哪些是违规求助? 4595361
关于积分的说明 14448923
捐赠科研通 4528029
什么是DOI,文献DOI怎么找? 2481322
邀请新用户注册赠送积分活动 1465542
关于科研通互助平台的介绍 1438200