已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Task-Friendly Underwater Image Enhancement for Machine Vision Applications

计算机科学 水下 计算机视觉 机器视觉 任务(项目管理) 人工智能 遥感 地质学 工程类 海洋学 系统工程
作者
Yu Meng,Liquan Shen,Zhengyong Wang,Xia Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14
标识
DOI:10.1109/tgrs.2023.3340244
摘要

Underwater images are often affected by color cast and blurring, which degrade the performance of underwater machine vision tasks. While existing underwater image enhancement (UIE) methods have been proposed to improve image quality for human perception, their effectiveness in enhancing machine vision performance is limited. In this article, a novel unsupervised UIE framework based on disentangled representation (DR) is proposed, which is designed for machine vision tasks. Specifically, the proposed framework disentangles the underwater image into two parts in the latent space according to whether they are beneficial to machine vision tasks: the task-friendly content features and the task-unfriendly distortion features. In addition, a semantic-aware contrastive module (SACM) is employed to alleviate the impact of losing key information required for machine vision tasks using the strategy of contrastive learning. Furthermore, two branches on the features and images are incorporated into the enhancement network, which serve the purpose of delivering task-relevant information to the enhancement model and guide the network to generate task-friendly images. Evaluation of the proposed method is conducted on multiple underwater image datasets, and a comparison is made with state-of-the-art enhancement methods in terms of machine vision performance. The experimental results demonstrate that the proposed method surpasses existing approaches in improving the accuracy and robustness of machine vision tasks, including object detection, semantic segmentation, and saliency detection in underwater environments. Our code is available at https://github.com/gemyumeng/TFUIE .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好听云发布了新的文献求助10
2秒前
3秒前
5秒前
周而复始@发布了新的文献求助10
6秒前
王桑完成签到 ,获得积分10
8秒前
Leif完成签到 ,获得积分0
10秒前
oupai完成签到,获得积分10
10秒前
14秒前
天真的不评完成签到 ,获得积分10
15秒前
lisu发布了新的文献求助10
18秒前
WUHUIWEN完成签到,获得积分10
19秒前
123发布了新的文献求助30
19秒前
医道无名完成签到,获得积分10
21秒前
ddd发布了新的文献求助10
22秒前
传奇3应助科研通管家采纳,获得10
30秒前
所所应助科研通管家采纳,获得10
30秒前
36秒前
36秒前
lisu完成签到,获得积分10
39秒前
Akim应助苏诗兰采纳,获得10
41秒前
41秒前
半圭为璋完成签到,获得积分10
41秒前
乐乐应助我爱物理采纳,获得10
42秒前
ddd完成签到,获得积分10
42秒前
gao0505完成签到,获得积分10
43秒前
yunyueqixun发布了新的文献求助10
43秒前
带虾的烧麦完成签到,获得积分10
44秒前
阿关完成签到 ,获得积分10
46秒前
研友_VZG7GZ应助lisu采纳,获得10
46秒前
阿槿发布了新的文献求助10
48秒前
50秒前
口外彭于晏完成签到,获得积分10
53秒前
sugarmei完成签到,获得积分10
54秒前
苏诗兰发布了新的文献求助10
56秒前
sugarmei发布了新的文献求助10
58秒前
AZQ完成签到,获得积分10
1分钟前
小象完成签到,获得积分10
1分钟前
123完成签到,获得积分20
1分钟前
佳佳应助阿槿采纳,获得10
1分钟前
Bighen完成签到 ,获得积分0
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968199
求助须知:如何正确求助?哪些是违规求助? 3513215
关于积分的说明 11166782
捐赠科研通 3248448
什么是DOI,文献DOI怎么找? 1794246
邀请新用户注册赠送积分活动 874950
科研通“疑难数据库(出版商)”最低求助积分说明 804629