清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Origin traceability of Yimucao (Chinese motherwort) in China using stable isotopes and extracts assisted by machine learning techniques

主成分分析 随机森林 人工智能 可追溯性 机器学习 生物 数学 地理 统计 计算机科学
作者
Juanru Liu,Chun‐Wang Meng,Ke Zhang,Sheng Gong,Fang Wang,Li Guo,Na Zou,Mengyuan Wu,Cheng Peng,Liang Xiong
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:126: 105900-105900 被引量:4
标识
DOI:10.1016/j.jfca.2023.105900
摘要

Leonurus japonicus Houtt. is a medicine food homology plant that is widely farmed in China. In traditional Chinese medicine, the aerial part of L. japonicus (Chinese motherwort) is named Yimucao and has medicinal uses. Yimucao in the seedling stage can be eaten as a wild vegetable and incorporated into one's everyday diet. The quality of Yimucao is often associated with its production origins, and the geographical authenticity of Yimucao is important for ensuring its clinical efficacy. A combined strategy based on the analysis of stable isotopes (δ13C, δ15N, δ2H, and δ18O), elemental content (%C and %N), and extracts (aqueous and ethanol extracts) was conducted to trace the geographical origin of Yimucao in China. Here, eight variables of 63 Yimucao samples collected from eight provinces were examined, and notable distinctions were observed on the provincial scale and regional scale (P < 0.05). Principal component analysis, orthogonal partial least square–discriminant analysis, and four machine learning methods (random forest, adaptive boosting, support vector machine, and neural network) were applied for geographical classification. We found that the random forest model was the most optimal classifier with a remarkable prediction accuracy reaching 98.4%. Among the eight differentiation markers analyzed, δ15N, δ18O, and δ2H were the most potent indicators. The correlation analysis between eight variables and environmental factors indicated that latitude, sunshine duration, and relative humidity were responsible for the majority of the differences in the production areas. This study demonstrated that comprehensive analysis of stable isotopes and extracts assisted by machine learning algorithms is a powerful method for determining the geographical origins of Yimucao in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧哈纳完成签到 ,获得积分10
4秒前
Lucas应助Fangfang采纳,获得10
5秒前
xingsixs完成签到 ,获得积分10
6秒前
插线板完成签到 ,获得积分10
6秒前
文承杰完成签到 ,获得积分10
12秒前
15秒前
tt完成签到,获得积分10
19秒前
Fangfang发布了新的文献求助10
19秒前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
1分钟前
1分钟前
Orange应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
sadh2完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
传奇3应助读书的时候采纳,获得10
1分钟前
明理的红牛完成签到,获得积分20
1分钟前
深情安青应助彭冬华采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
西瓜霜发布了新的文献求助10
2分钟前
3分钟前
彭于晏应助读书的时候采纳,获得80
3分钟前
落沧完成签到 ,获得积分10
3分钟前
充电宝应助西瓜霜采纳,获得10
3分钟前
3分钟前
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得30
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
传奇3应助读书的时候采纳,获得10
3分钟前
JodieZhu完成签到,获得积分10
3分钟前
嘻嘻哈哈发布了新的文献求助10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732400
求助须知:如何正确求助?哪些是违规求助? 5338949
关于积分的说明 15322212
捐赠科研通 4877990
什么是DOI,文献DOI怎么找? 2620796
邀请新用户注册赠送积分活动 1570000
关于科研通互助平台的介绍 1526672