Origin traceability of Yimucao (Chinese motherwort) in China using stable isotopes and extracts assisted by machine learning techniques

主成分分析 随机森林 人工智能 可追溯性 机器学习 生物 数学 地理 统计 计算机科学
作者
Juanru Liu,Chun‐Wang Meng,Ke K. Zhang,Sheng Gong,Sheng Wang,Li Guo,Na Zou,Mengyuan Wu,Cheng Peng,Liang Xiong
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:126: 105900-105900 被引量:1
标识
DOI:10.1016/j.jfca.2023.105900
摘要

Leonurus japonicus Houtt. is a medicine food homology plant that is widely farmed in China. In traditional Chinese medicine, the aerial part of L. japonicus (Chinese motherwort) is named Yimucao and has medicinal uses. Yimucao in the seedling stage can be eaten as a wild vegetable and incorporated into one's everyday diet. The quality of Yimucao is often associated with its production origins, and the geographical authenticity of Yimucao is important for ensuring its clinical efficacy. A combined strategy based on the analysis of stable isotopes (δ13C, δ15N, δ2H, and δ18O), elemental content (%C and %N), and extracts (aqueous and ethanol extracts) was conducted to trace the geographical origin of Yimucao in China. Here, eight variables of 63 Yimucao samples collected from eight provinces were examined, and notable distinctions were observed on the provincial scale and regional scale (P < 0.05). Principal component analysis, orthogonal partial least square–discriminant analysis, and four machine learning methods (random forest, adaptive boosting, support vector machine, and neural network) were applied for geographical classification. We found that the random forest model was the most optimal classifier with a remarkable prediction accuracy reaching 98.4%. Among the eight differentiation markers analyzed, δ15N, δ18O, and δ2H were the most potent indicators. The correlation analysis between eight variables and environmental factors indicated that latitude, sunshine duration, and relative humidity were responsible for the majority of the differences in the production areas. This study demonstrated that comprehensive analysis of stable isotopes and extracts assisted by machine learning algorithms is a powerful method for determining the geographical origins of Yimucao in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CHINA_C13发布了新的文献求助10
刚刚
Mars发布了新的文献求助10
1秒前
哈哈哈完成签到,获得积分10
1秒前
玛卡巴卡应助平常的毛豆采纳,获得100
2秒前
默默的青旋完成签到,获得积分10
3秒前
6秒前
搜集达人应助淡淡采白采纳,获得10
6秒前
高高代珊完成签到 ,获得积分10
7秒前
gmc发布了新的文献求助10
8秒前
8秒前
9秒前
善学以致用应助Mian采纳,获得10
9秒前
学科共进发布了新的文献求助60
10秒前
LWJ完成签到 ,获得积分10
10秒前
10秒前
缓慢的糖豆完成签到,获得积分10
11秒前
阉太狼完成签到,获得积分10
11秒前
12秒前
soory完成签到,获得积分10
13秒前
任性的傲柏完成签到,获得积分10
13秒前
lwk205完成签到,获得积分0
13秒前
14秒前
一一完成签到,获得积分10
14秒前
14秒前
14秒前
高中生完成签到,获得积分10
15秒前
15秒前
15秒前
希望天下0贩的0应助TT采纳,获得10
16秒前
xxegt完成签到 ,获得积分10
16秒前
17秒前
爱吃泡芙发布了新的文献求助10
17秒前
susu完成签到,获得积分10
19秒前
会神发布了新的文献求助10
19秒前
KK完成签到,获得积分10
20秒前
充电宝应助justin采纳,获得10
22秒前
23秒前
Ch完成签到 ,获得积分10
24秒前
26秒前
ajun完成签到,获得积分10
26秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824