Origin traceability of Yimucao (Chinese motherwort) in China using stable isotopes and extracts assisted by machine learning techniques

主成分分析 随机森林 人工智能 可追溯性 机器学习 生物 数学 地理 统计 计算机科学
作者
Juanru Liu,Chun‐Wang Meng,Ke K. Zhang,Sheng Gong,Fang Wang,Li Guo,Na Zou,Mengyuan Wu,Cheng Peng,Liang Xiong
出处
期刊:Journal of Food Composition and Analysis [Elsevier BV]
卷期号:126: 105900-105900 被引量:3
标识
DOI:10.1016/j.jfca.2023.105900
摘要

Leonurus japonicus Houtt. is a medicine food homology plant that is widely farmed in China. In traditional Chinese medicine, the aerial part of L. japonicus (Chinese motherwort) is named Yimucao and has medicinal uses. Yimucao in the seedling stage can be eaten as a wild vegetable and incorporated into one's everyday diet. The quality of Yimucao is often associated with its production origins, and the geographical authenticity of Yimucao is important for ensuring its clinical efficacy. A combined strategy based on the analysis of stable isotopes (δ13C, δ15N, δ2H, and δ18O), elemental content (%C and %N), and extracts (aqueous and ethanol extracts) was conducted to trace the geographical origin of Yimucao in China. Here, eight variables of 63 Yimucao samples collected from eight provinces were examined, and notable distinctions were observed on the provincial scale and regional scale (P < 0.05). Principal component analysis, orthogonal partial least square–discriminant analysis, and four machine learning methods (random forest, adaptive boosting, support vector machine, and neural network) were applied for geographical classification. We found that the random forest model was the most optimal classifier with a remarkable prediction accuracy reaching 98.4%. Among the eight differentiation markers analyzed, δ15N, δ18O, and δ2H were the most potent indicators. The correlation analysis between eight variables and environmental factors indicated that latitude, sunshine duration, and relative humidity were responsible for the majority of the differences in the production areas. This study demonstrated that comprehensive analysis of stable isotopes and extracts assisted by machine learning algorithms is a powerful method for determining the geographical origins of Yimucao in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
zp4完成签到,获得积分10
刚刚
三木完成签到 ,获得积分10
刚刚
式微发布了新的文献求助10
1秒前
1秒前
呼延坤完成签到 ,获得积分10
1秒前
yanxu关注了科研通微信公众号
1秒前
2秒前
科研通AI6应助qda采纳,获得10
2秒前
充电宝应助ll采纳,获得10
2秒前
芦蕊洁发布了新的文献求助10
2秒前
toxin37发布了新的文献求助10
3秒前
lumos发布了新的文献求助10
5秒前
小胡发布了新的文献求助30
5秒前
Llt关闭了Llt文献求助
5秒前
6秒前
Hoodie发布了新的文献求助10
6秒前
7秒前
Jasper应助范雅寒采纳,获得10
7秒前
Renee完成签到 ,获得积分10
9秒前
苏子关注了科研通微信公众号
9秒前
qwp发布了新的文献求助20
9秒前
优雅灵波完成签到,获得积分10
11秒前
小明月完成签到,获得积分10
11秒前
13秒前
量子星尘发布了新的文献求助50
13秒前
13秒前
14秒前
GRG完成签到 ,获得积分0
14秒前
上官若男应助猪头采纳,获得10
14秒前
赘婿应助JonyiCheng采纳,获得10
15秒前
凌爽完成签到 ,获得积分10
15秒前
16秒前
16秒前
雨辰完成签到 ,获得积分10
16秒前
16秒前
JC完成签到,获得积分10
17秒前
甜橙汁完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5082475
求助须知:如何正确求助?哪些是违规求助? 4299854
关于积分的说明 13397214
捐赠科研通 4123637
什么是DOI,文献DOI怎么找? 2258551
邀请新用户注册赠送积分活动 1262782
关于科研通互助平台的介绍 1196720