Origin traceability of Yimucao (Chinese motherwort) in China using stable isotopes and extracts assisted by machine learning techniques

主成分分析 随机森林 人工智能 可追溯性 机器学习 生物 数学 地理 统计 计算机科学
作者
Juanru Liu,Chun‐Wang Meng,Ke K. Zhang,Sheng Gong,Sheng Wang,Li Guo,Na Zou,Mengyuan Wu,Cheng Peng,Liang Xiong
出处
期刊:Journal of Food Composition and Analysis [Elsevier]
卷期号:126: 105900-105900
标识
DOI:10.1016/j.jfca.2023.105900
摘要

Leonurus japonicus Houtt. is a medicine food homology plant that is widely farmed in China. In traditional Chinese medicine, the aerial part of L. japonicus (Chinese motherwort) is named Yimucao and has medicinal uses. Yimucao in the seedling stage can be eaten as a wild vegetable and incorporated into one's everyday diet. The quality of Yimucao is often associated with its production origins, and the geographical authenticity of Yimucao is important for ensuring its clinical efficacy. A combined strategy based on the analysis of stable isotopes (δ13C, δ15N, δ2H, and δ18O), elemental content (%C and %N), and extracts (aqueous and ethanol extracts) was conducted to trace the geographical origin of Yimucao in China. Here, eight variables of 63 Yimucao samples collected from eight provinces were examined, and notable distinctions were observed on the provincial scale and regional scale (P < 0.05). Principal component analysis, orthogonal partial least square–discriminant analysis, and four machine learning methods (random forest, adaptive boosting, support vector machine, and neural network) were applied for geographical classification. We found that the random forest model was the most optimal classifier with a remarkable prediction accuracy reaching 98.4%. Among the eight differentiation markers analyzed, δ15N, δ18O, and δ2H were the most potent indicators. The correlation analysis between eight variables and environmental factors indicated that latitude, sunshine duration, and relative humidity were responsible for the majority of the differences in the production areas. This study demonstrated that comprehensive analysis of stable isotopes and extracts assisted by machine learning algorithms is a powerful method for determining the geographical origins of Yimucao in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3434232发布了新的文献求助10
2秒前
万能图书馆应助木偶采纳,获得10
2秒前
jesuissi发布了新的文献求助20
3秒前
心流完成签到 ,获得积分10
4秒前
lynn完成签到 ,获得积分10
5秒前
jianghs完成签到,获得积分0
5秒前
5秒前
5秒前
6秒前
烂漫凡雁完成签到,获得积分10
6秒前
donfern发布了新的文献求助10
7秒前
深情安青应助安静笑晴采纳,获得10
8秒前
8秒前
葡萄成熟应助科研通管家采纳,获得10
9秒前
不配.应助科研通管家采纳,获得20
9秒前
彳亍1117应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
9秒前
huvy发布了新的文献求助10
9秒前
读研好难完成签到,获得积分10
9秒前
汉堡包应助心灵美绯采纳,获得10
11秒前
烂漫凡雁发布了新的文献求助20
11秒前
风信子完成签到 ,获得积分10
12秒前
超级的鞅发布了新的文献求助10
12秒前
务实曲奇发布了新的文献求助10
12秒前
13秒前
柳子完成签到,获得积分10
14秒前
薰硝壤应助3434232采纳,获得10
14秒前
orbitvox完成签到,获得积分10
14秒前
15秒前
loin发布了新的文献求助10
15秒前
19秒前
超级的鞅完成签到,获得积分10
19秒前
发nature完成签到,获得积分10
21秒前
科研通AI2S应助QxQMDR采纳,获得10
23秒前
23秒前
23秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141416
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802733
捐赠科研通 2448629
什么是DOI,文献DOI怎么找? 1302677
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237