基因组不稳定性
同源重组
PARP抑制剂
医学
肿瘤科
微卫星不稳定性
卵巢癌
生物标志物
内科学
计算生物学
基因组
聚ADP核糖聚合酶
癌症
癌症研究
聚合酶
生物
遗传学
DNA
基因
微卫星
DNA损伤
等位基因
作者
Christian Pozzorini,Gregoire Andre,Tommaso Coletta,Adrien Buisson,Jonathan Bieler,Loïc Ferrer,Rieke Kempfer,Pierre Saintigny,Alexandre Harlé,Davide Vacirca,Massimo Barberis,Pauline Gilson,Cristin Roma,Alexandra Saitta,Ewan St. John Smith,Floriane Consales Barras,Lucia Ripol,Martin Fritzsche,Ana Claudia Marques,Amjad Alkodsi
标识
DOI:10.1016/j.xcrm.2023.101344
摘要
Homologous recombination deficiency (HRD) is a predictive biomarker for poly(ADP-ribose) polymerase 1 inhibitor (PARPi) sensitivity. Routine HRD testing relies on identifying BRCA mutations, but additional HRD-positive patients can be identified by measuring genomic instability (GI), a consequence of HRD. However, the cost and complexity of available solutions hamper GI testing. We introduce a deep learning framework, GIInger, that identifies GI from HRD-induced scarring observed in low-pass whole-genome sequencing data. GIInger seamlessly integrates into standard BRCA testing workflows and yields reproducible results concordant with a reference method in a multisite study of 327 ovarian cancer samples. Applied to a BRCA wild-type enriched subgroup of 195 PAOLA-1 clinical trial patients, GIInger identified HRD-positive patients who experienced significantly extended progression-free survival when treated with PARPi. GIInger is, therefore, a cost-effective and easy-to-implement method for accurately stratifying patients with ovarian cancer for first-line PARPi treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI