Generation and analysis of synthetic data via Bayesian networks: a robust approach for uncertainty quantification via Bayesian paradigm

贝叶斯概率 计算机科学 贝叶斯网络 人工智能 机器学习
作者
Luiz Eduardo Barreto Martins,Flávio B. Gonçalves,Thais P. Galletti
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2402.17915
摘要

Safe and reliable disclosure of information from confidential data is a challenging statistical problem. A common approach considers the generation of synthetic data, to be disclosed instead of the original data. Efficient approaches ought to deal with the trade-off between reliability and confidentiality of the released data. Ultimately, the aim is to be able to reproduce as accurately as possible statistical analysis of the original data using the synthetic one. Bayesian networks is a model-based approach that can be used to parsimoniously estimate the underlying distribution of the original data and generate synthetic datasets. These ought to not only approximate the results of analyses with the original data but also robustly quantify the uncertainty involved in the approximation. This paper proposes a fully Bayesian approach to generate and analyze synthetic data based on the posterior predictive distribution of statistics of the synthetic data, allowing for efficient uncertainty quantification. The methodology makes use of probability properties of the model to devise a computationally efficient algorithm to obtain the target predictive distributions via Monte Carlo. Model parsimony is handled by proposing a general class of penalizing priors for Bayesian network models. Finally, the efficiency and applicability of the proposed methodology is empirically investigated through simulated and real examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sw完成签到,获得积分10
刚刚
李爱国应助123采纳,获得10
1秒前
hexiqin完成签到,获得积分10
2秒前
跳跃的访琴完成签到 ,获得积分10
2秒前
3秒前
火星上的夜梦完成签到 ,获得积分10
3秒前
我是老大应助charry采纳,获得10
4秒前
科研通AI5应助qiushui采纳,获得10
5秒前
皮影完成签到,获得积分10
5秒前
斯寜应助yao采纳,获得10
5秒前
小二郎应助不二仙采纳,获得10
6秒前
小蘑菇应助小郑的姜姜采纳,获得10
6秒前
义气靖仇发布了新的文献求助10
7秒前
所所应助zou采纳,获得10
7秒前
zou完成签到,获得积分10
8秒前
多多看文献应助wisher采纳,获得10
8秒前
图图应助曾经荔枝采纳,获得50
8秒前
YanXuanhua发布了新的文献求助10
9秒前
9秒前
猩心发布了新的文献求助30
9秒前
风里有声音完成签到 ,获得积分10
10秒前
Qianbaor68应助踏实的熠彤采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
甜蜜慕凝完成签到,获得积分10
12秒前
12秒前
酷波er应助Atlantic采纳,获得10
12秒前
ding应助superneo采纳,获得10
14秒前
14秒前
14秒前
Amanda完成签到 ,获得积分10
15秒前
劲秉应助BBH采纳,获得10
15秒前
15秒前
山鬼发布了新的文献求助10
15秒前
15秒前
丘比特应助猪猪hero采纳,获得10
16秒前
秦兴虎完成签到,获得积分10
16秒前
zoey发布了新的文献求助10
16秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735018
求助须知:如何正确求助?哪些是违规求助? 3278902
关于积分的说明 10012243
捐赠科研通 2995542
什么是DOI,文献DOI怎么找? 1643492
邀请新用户注册赠送积分活动 781270
科研通“疑难数据库(出版商)”最低求助积分说明 749338