Exploring the potential of visual tracking and counting for trees infected with pine wilt disease based on improved YOLOv5 and StrongSORT algorithm

枯萎病 跟踪(教育) 算法 人工智能 计算机视觉 计算机科学 数学 生物 园艺 心理学 教育学
作者
Xinquan Ye,Jie Pan,Fan Shao,Gaosheng Liu,Jiayi Lin,Dongxiao Xu,Jia Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:218: 108671-108671 被引量:12
标识
DOI:10.1016/j.compag.2024.108671
摘要

Pine wilt disease (PWD) has been consistently recognized as one of the most catastrophic forest diseases in China over the past four decades. Accurate identification and timely removal of infected pine trees are vital for controlling the disease spread. However, previous studies about the identification of PWD-infected trees still relied on traditional machine learning methods, with static imagery being the predominant data form utilized. Due to diverse forest environments, there are significant errors in wide-range identification and the collaborative adaptation capability between multiple algorithms is suboptimal. Real-time dynamic tracking and counting of PWD-infected trees based on deep learning have received little attention. Thus, an improved YOLOv5 was proposed in this study, which in synergy with StrongSORT, enables the tracking and counting of PWD-infected trees in a dynamic visual way. For this purpose, a dataset of 6,450 static images (39,809 PWD-infected tree samples) was constructed for model training and validation, and 130 dynamic video segments (approximately 210,000 frames) and 674 static images were used to evaluate the proposed method. To enhance feature extraction efficiency in deep learning networks, the Second-Order Channel Attention (SOCA) mechanism was introduced, and the Simplified Spatial Pyramid Pooling-Fast (SimSPPF) was employed as a replacement for the original SPPF. Additionally, for the geometric features of PWD-infected trees, a more scientific Weighted Boxes Fusion (WBF) strategy was utilized during the prediction phase to construct detection boxes, which contributes to better detection of dense targets. Regarding detection, the improved YOLOv5 performs optimally, with [email protected] and F1-Score of 92.4 % and 88.3 %, respectively, an increase of 2.5 % and 1 % compared to the original model. The generalization capability has been evaluated on the test set, all metrics exceeded 90 %. In terms of tracking, the combination of the improved YOLOv5 with StrongSORT yields Identification F1 (IDF1), High-Order Tracking Accuracy (HOTA), Multi-Object Tracking Accuracy (MOTA), and Multi-Object Tracking Precision (MOTP) of 75.4 %, 55.6 %, 63.5 %, and 72.3 % respectively, showcasing increase of 3.5 %, 2.7 %, 6 %, and 0.3 % compared to the original model. Notably, the Mostly Lost (ML) and Identity Switches (IDSW) are reduced by 43 % and 20 % respectively. Concerning counting, the proposed method was evaluated on 130 dynamic video segments, indicating a high correlation with the Ground truth (R2 = 0.965), affirming its effectiveness. In summary, visual tracking and counting of PWD-infected trees in complex forest areas can be enabled by the method proposed, providing a new approach for the intelligent monitoring and management of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴晨曦发布了新的文献求助10
刚刚
小二郎应助lb采纳,获得10
刚刚
1秒前
云ch发布了新的文献求助10
1秒前
华仔应助刘二狗采纳,获得10
1秒前
思源应助天天小女孩采纳,获得10
1秒前
2秒前
xuanwu发布了新的文献求助10
2秒前
3秒前
汉堡包应助WQ采纳,获得50
3秒前
1GE完成签到,获得积分10
3秒前
3秒前
minghJ完成签到,获得积分10
4秒前
4秒前
4秒前
morgenlefay完成签到,获得积分10
4秒前
高高的迎天完成签到,获得积分10
5秒前
ding应助微信研友采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
踏实从雪发布了新的文献求助50
5秒前
上官若男应助baomingqiu采纳,获得10
5秒前
5秒前
6秒前
无私的芹发布了新的文献求助10
6秒前
Lucas应助洁净的天思采纳,获得10
6秒前
陨yue完成签到,获得积分10
6秒前
yznfly应助ei123采纳,获得30
6秒前
健忘的老姆完成签到,获得积分10
6秒前
小椰发布了新的文献求助10
6秒前
英俊的铭应助majiko采纳,获得10
7秒前
ice发布了新的文献求助10
7秒前
7秒前
7秒前
咋还发布了新的文献求助10
7秒前
aaaa完成签到,获得积分10
7秒前
Li发布了新的文献求助60
7秒前
free发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180