Exploring the potential of visual tracking and counting for trees infected with pine wilt disease based on improved YOLOv5 and StrongSORT algorithm

枯萎病 跟踪(教育) 算法 人工智能 计算机视觉 计算机科学 数学 生物 园艺 心理学 教育学
作者
Xinquan Ye,Jie Pan,Fan Shao,Gaosheng Liu,Jiayi Lin,Dongxiao Xu,Jia Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:218: 108671-108671 被引量:24
标识
DOI:10.1016/j.compag.2024.108671
摘要

Pine wilt disease (PWD) has been consistently recognized as one of the most catastrophic forest diseases in China over the past four decades. Accurate identification and timely removal of infected pine trees are vital for controlling the disease spread. However, previous studies about the identification of PWD-infected trees still relied on traditional machine learning methods, with static imagery being the predominant data form utilized. Due to diverse forest environments, there are significant errors in wide-range identification and the collaborative adaptation capability between multiple algorithms is suboptimal. Real-time dynamic tracking and counting of PWD-infected trees based on deep learning have received little attention. Thus, an improved YOLOv5 was proposed in this study, which in synergy with StrongSORT, enables the tracking and counting of PWD-infected trees in a dynamic visual way. For this purpose, a dataset of 6,450 static images (39,809 PWD-infected tree samples) was constructed for model training and validation, and 130 dynamic video segments (approximately 210,000 frames) and 674 static images were used to evaluate the proposed method. To enhance feature extraction efficiency in deep learning networks, the Second-Order Channel Attention (SOCA) mechanism was introduced, and the Simplified Spatial Pyramid Pooling-Fast (SimSPPF) was employed as a replacement for the original SPPF. Additionally, for the geometric features of PWD-infected trees, a more scientific Weighted Boxes Fusion (WBF) strategy was utilized during the prediction phase to construct detection boxes, which contributes to better detection of dense targets. Regarding detection, the improved YOLOv5 performs optimally, with [email protected] and F1-Score of 92.4 % and 88.3 %, respectively, an increase of 2.5 % and 1 % compared to the original model. The generalization capability has been evaluated on the test set, all metrics exceeded 90 %. In terms of tracking, the combination of the improved YOLOv5 with StrongSORT yields Identification F1 (IDF1), High-Order Tracking Accuracy (HOTA), Multi-Object Tracking Accuracy (MOTA), and Multi-Object Tracking Precision (MOTP) of 75.4 %, 55.6 %, 63.5 %, and 72.3 % respectively, showcasing increase of 3.5 %, 2.7 %, 6 %, and 0.3 % compared to the original model. Notably, the Mostly Lost (ML) and Identity Switches (IDSW) are reduced by 43 % and 20 % respectively. Concerning counting, the proposed method was evaluated on 130 dynamic video segments, indicating a high correlation with the Ground truth (R2 = 0.965), affirming its effectiveness. In summary, visual tracking and counting of PWD-infected trees in complex forest areas can be enabled by the method proposed, providing a new approach for the intelligent monitoring and management of PWD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
西乡塘塘主完成签到,获得积分10
1秒前
所所应助南橘采纳,获得10
1秒前
yingziiii完成签到,获得积分10
2秒前
Hello应助瞿寒采纳,获得10
2秒前
3秒前
3秒前
K.I.D发布了新的文献求助10
4秒前
4秒前
d_ly完成签到,获得积分20
5秒前
李瑞康发布了新的文献求助10
5秒前
小蘑菇应助bae采纳,获得10
5秒前
yyer完成签到,获得积分10
6秒前
英勇飞机发布了新的文献求助10
6秒前
6秒前
冷妹君发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
龙龙龙完成签到,获得积分10
7秒前
9秒前
卓卓发布了新的文献求助10
10秒前
10秒前
dshihb发布了新的文献求助30
11秒前
11秒前
Laoxing258完成签到,获得积分10
13秒前
13秒前
zhang_y2发布了新的文献求助10
13秒前
Orange应助成就梦松采纳,获得10
14秒前
ding应助samllcloud采纳,获得10
14秒前
将寻发布了新的文献求助30
15秒前
刘老板发布了新的文献求助10
15秒前
Leo应助重要的小猫咪采纳,获得10
15秒前
16秒前
16秒前
落后的成仁完成签到,获得积分20
17秒前
大方万仇完成签到 ,获得积分10
17秒前
mr_wang发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355086
求助须知:如何正确求助?哪些是违规求助? 4487060
关于积分的说明 13968836
捐赠科研通 4387749
什么是DOI,文献DOI怎么找? 2410553
邀请新用户注册赠送积分活动 1403023
关于科研通互助平台的介绍 1376743