已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Secure Internet Financial Transactions: A Framework Integrating Multi-Factor Authentication and Machine Learning

计算机科学 机器学习 可用性 人工智能 朴素贝叶斯分类器 随机森林 认证(法律) 决策树 计算机安全 支持向量机 人机交互
作者
AlsharifHasan Mohamad Aburbeian,Manuel Fernández‐Veiga
出处
期刊:AI [MDPI AG]
卷期号:5 (1): 177-194 被引量:8
标识
DOI:10.3390/ai5010010
摘要

Securing online financial transactions has become a critical concern in an era where financial services are becoming more and more digital. The transition to digital platforms for conducting daily transactions exposed customers to possible risks from cybercriminals. This study proposed a framework that combines multi-factor authentication and machine learning to increase the safety of online financial transactions. Our methodology is based on using two layers of security. The first layer incorporates two factors to authenticate users. The second layer utilizes a machine learning component, which is triggered when the system detects a potential fraud. This machine learning layer employs facial recognition as a decisive authentication factor for further protection. To build the machine learning model, four supervised classifiers were tested: logistic regression, decision trees, random forest, and naive Bayes. The results showed that the accuracy of each classifier was 97.938%, 97.881%, 96.717%, and 92.354%, respectively. This study’s superiority is due to its methodology, which integrates machine learning as an embedded layer in a multi-factor authentication framework to address usability, efficacy, and the dynamic nature of various e-commerce platform features. With the evolving financial landscape, a continuous exploration of authentication factors and datasets to enhance and adapt security measures will be considered in future work.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
yimeitongzi发布了新的文献求助10
9秒前
WuCola完成签到 ,获得积分10
9秒前
10秒前
16秒前
16秒前
19秒前
一个可爱的人完成签到 ,获得积分10
21秒前
23秒前
26秒前
26秒前
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
李健应助科研通管家采纳,获得30
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得10
27秒前
寻道图强应助科研通管家采纳,获得30
27秒前
乐乐应助科研通管家采纳,获得10
27秒前
28秒前
28秒前
白青发布了新的文献求助10
29秒前
31秒前
666完成签到 ,获得积分10
31秒前
333串发布了新的文献求助10
32秒前
35秒前
星辰大海应助材料虎采纳,获得10
38秒前
40秒前
41秒前
白青完成签到,获得积分10
41秒前
43秒前
44秒前
shula完成签到,获得积分10
46秒前
材料虎完成签到,获得积分10
47秒前
火华完成签到 ,获得积分10
48秒前
材料虎发布了新的文献求助10
49秒前
彭于晏应助白青采纳,获得10
52秒前
54秒前
58秒前
番茄完成签到 ,获得积分10
58秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801834
关于积分的说明 7845817
捐赠科研通 2459180
什么是DOI,文献DOI怎么找? 1309085
科研通“疑难数据库(出版商)”最低求助积分说明 628638
版权声明 601727