临近预报
水准点(测量)
计量经济学
贝叶斯概率
动力系数
经济
滞后
计量经济模型
贝叶斯向量自回归
样品(材料)
经济指标
班级(哲学)
计算机科学
宏观经济学
地理
人工智能
化学
大地测量学
气象学
色谱法
计算机网络
作者
Juan Drechsel Antolin-Diaz,Thomas Drechsel,Iván Petrella
标识
DOI:10.1016/j.jeconom.2023.105634
摘要
A key question for households, firms, and policy makers is: how is the economy doing now? This paper develops a Bayesian dynamic factor model that allows for nonlinearities, heterogeneous lead–lag patterns and fat tails in macroeconomic data. Explicitly modeling these features changes the way that different indicators contribute to the real-time assessment of the state of the economy, and substantially improves the out-of-sample performance of this class of models. In a formal evaluation, our nowcasting framework beats benchmark econometric models and professional forecasters at predicting US GDP growth in real time.
科研通智能强力驱动
Strongly Powered by AbleSci AI