材料科学
热电效应
箔法
电阻率和电导率
热电材料
热稳定性
扩散阻挡层
电极
金属
分析化学(期刊)
热导率
冶金
复合材料
图层(电子)
化学工程
热力学
电气工程
物理化学
化学
物理
色谱法
工程类
作者
Nuo Qu,Yuxin Sun,Zihang Liu,Liangjun Xie,Yuke Zhu,Hao Wu,R. B. Baliga J. C. Chai,Jinxuan Cheng,Fengkai Guo,Qian Zhang,Ruiqi Wang,Bangming Li,Zhiguo Wei,Wei Cai,Jiehe Sui
标识
DOI:10.1002/aenm.202302818
摘要
Abstract Mg 3 (Sb, Bi) 2 ‐based materials possess excellent room‐temperature thermoelectric performance, while poor interfacial behaviors occur when connected with metal electrodes due to the strong chemical activity and volatility of Mg element. In this study, a high efficiency of 7.1% under a temperature difference of 230 K is achieved in n‐Mg 3 (Sb, Bi) 2 /p‐Bi 2 Te 3 thermoelectric module. When changing the interfacial layer from Fe powder to Fe foil, it effectively prevents a significant diffusion of both Mg and Bi elements from the material matrix to the interfacial layer, resulting in an extremely low contact resistivity ≈3.4 µΩ cm 2 that is almost one order lower than of that of Fe powder/Mg 3 (Sb, Bi) 2 junction ≈30 µΩ cm 2 . Particularly, a thin diffusion layer with a width of ≈2 µm is initially observed in the unannealed Fe foil/Mg 3 (Sb, Bi) 2 junction. Even after thermal aging at 573 K for 28 days, the diffusion‐layer width is basically unchanged and its corresponding contact resistivity maintained as low as ≈5.8 µΩ cm 2 . Overall, this work provides deep insights into interfacial design and paves the way for high‐performance and sustainable low‐grade waste heat recovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI