脂质体
内化
药物输送
肽
化学
钙网蛋白
细胞生物学
阳离子脂质体
受体
生物物理学
生物化学
生物
内质网
转染
有机化学
基因
作者
Kuo‐Ching Mei,Nagasri Thota,Pu-Sheng Wei,B K Yi,Emily E. Bonacquisti,Juliane Nguyen
标识
DOI:10.1016/j.ijpharm.2024.123844
摘要
Discovering new ligands for enhanced drug uptake and delivery has been the core interest of the drug delivery field. This study capitalizes on the natural "eat-me" signal of calreticulin (CRT), proposing a novel strategy for functionalizing liposomes to improve cellular uptake. CRT is presented on the surfaces of apoptotic cells, and it plays a crucial role in immunogenic cell death (ICD). This is because it is essential for antigen uptake via low-density lipoprotein (LDL) receptor-mediated phagocytosis. Inspired by this mechanism, we interrogated CRT's "eat-me" feature using CRT-derived peptides to functionalize liposomes. We studied liposomal formulation stability, properties, cellular uptake, toxicity, and intracellular trafficking in dendritic cells. We identified key peptide fragments of CRT, specifically from the hydrophilic P-domain, that are compatible with liposomal formulations. Contrary to the more hydrophobic N-domain peptides, the P-domain peptides induced significantly higher liposomal uptake in DC2.4 dendritic cells than cationic DOTAP and anionic DPPG liposomes without inducing toxicity. The P-domain-derived peptides led to enhanced liposomal uptake into DC2.4 dendritic cells compared to the standard DPPC liposomes. The uptake can be partially blocked by the receptor-associated protein (RAP). Upon internalization, P-domain-peptide-decorated liposomes showed higher co-localization with lysosomes compared to the standard DPPC liposomes. Our findings illuminate CRT's operational role and identify P-domain peptides as promising agents for developing biomimetic drug delivery systems that can potentially replicate CRT's "eat-me" function.
科研通智能强力驱动
Strongly Powered by AbleSci AI