Predicting high-resolution air quality using machine learning: Integration of large eddy simulation and urban morphology data

空气质量指数 可解释性 卷积神经网络 计算机科学 环境科学 一致性(知识库) 人工智能 均方误差 人工神经网络 一般化 机器学习 气象学 统计 数学 地理 数学分析
作者
Shibao Wang,Jeremy McGibbon,Yanxu Zhang
出处
期刊:Environmental Pollution [Elsevier]
卷期号:344: 123371-123371 被引量:13
标识
DOI:10.1016/j.envpol.2024.123371
摘要

Accurately predicting air pollutants, especially in urban areas with well-defined spatial structures, is crucial. Over the past decade, machine learning techniques have been widely used to forecast urban air quality. However, traditional machine learning approaches have limitations in accuracy and interpretability for predicting pollutants. In this study, we propose a convolutional neural network (CNN) model to predict the spatial distribution of CO concentration in Nanjing urban area at 10 m resolution. Our model incorporates various factors as input, such as building height, topography, emissions, and is trained against the outputs simulated by the parallelized large-eddy simulation model (PALM). The PALM model has 48 different scenarios that varied in emissions, wind speeds, and wind directions. The results display a strong consistency between the two models. Furthermore, we evaluate the performance of our model using a 10-fold cross-validation and out-of-sample cross-validation approach. This yields a robust correlation (with both R2 > 0.8) and a low RMSE between the CO predicted by the PALM and CNN models, which demonstrates the generalization capability of our CNN model. The CNN can extract crucial features from the resulted weight contribution map. This map indicates that the CO concentration at a location is more influenced by nearby buildings and emissions than distant ones. The interpretable patterns uncovered by our model are related to neighborhood effects, wind speeds, directions, and the impact of orientation on urban CO distribution. The model also shows high prediction accuracy (R > 0.8) when applied to another city. Overall, the integration of our CNN framework with the PALM model enhances the accuracy of air quality predictions, while enabling a fluid dynamic laws interpretation, providing effective tools for air quality management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
书虫完成签到,获得积分10
刚刚
1秒前
zonglei完成签到,获得积分10
1秒前
踏雪飞鸿完成签到,获得积分10
2秒前
肥鱼不会飞完成签到,获得积分10
3秒前
3秒前
达雨完成签到,获得积分20
3秒前
细嗅蔷薇完成签到,获得积分10
4秒前
梦璃完成签到 ,获得积分10
4秒前
sia完成签到,获得积分10
4秒前
一棵树发布了新的文献求助10
5秒前
Lloyd_Lee完成签到,获得积分10
5秒前
手可摘星陈同学完成签到 ,获得积分10
5秒前
万戈成完成签到,获得积分10
6秒前
xu发布了新的文献求助10
6秒前
念芹完成签到,获得积分10
6秒前
天涯业完成签到 ,获得积分10
6秒前
现代的紫霜完成签到,获得积分10
7秒前
斑驳发布了新的文献求助10
7秒前
Brain完成签到 ,获得积分10
8秒前
Zhjie126完成签到,获得积分10
9秒前
阔达的秀发完成签到,获得积分10
9秒前
HCLonely完成签到,获得积分0
9秒前
9秒前
mary完成签到 ,获得积分10
9秒前
關不箸关注了科研通微信公众号
10秒前
Hina完成签到,获得积分10
10秒前
青羽落霞完成签到 ,获得积分10
11秒前
11秒前
星丶完成签到 ,获得积分10
11秒前
xiaxia42完成签到 ,获得积分10
11秒前
hansa完成签到,获得积分0
12秒前
叮叮当当完成签到,获得积分10
12秒前
一棵树完成签到,获得积分10
12秒前
孙鹏完成签到,获得积分10
13秒前
13秒前
小蘑菇应助阔达的秀发采纳,获得10
13秒前
MingQue完成签到,获得积分10
13秒前
wenbinvan完成签到,获得积分0
14秒前
自然归尘完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
A Modified Hierarchical Risk Parity Framework for Portfolio Management 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3575235
求助须知:如何正确求助?哪些是违规求助? 3145227
关于积分的说明 9458524
捐赠科研通 2846450
什么是DOI,文献DOI怎么找? 1564876
邀请新用户注册赠送积分活动 732685
科研通“疑难数据库(出版商)”最低求助积分说明 719224