Hierarchical feature selection based on neighborhood interclass spacing from fine to coarse

特征选择 计算机科学 人工智能 选择(遗传算法) 模式识别(心理学) 特征(语言学) 数据挖掘 数学 机器学习 语言学 哲学
作者
Zilong Lin,Yaojin Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:575: 127319-127319
标识
DOI:10.1016/j.neucom.2024.127319
摘要

In hierarchical classification learning, the hierarchical feature selection algorithm plays an important role in overcoming the curse of dimensionality. Existing hierarchical feature selection algorithms, based on the granular computing framework, all use three basic search strategies to search for similar and dissimilar classes. These strategies compute the importance of features to the global label for feature selection. However, existing methods based on the sibling strategy can only stay at the fine-grained level for feature selection, often without considering that the fine-grained level is also continuously separated from the coarse-grained level. Thus, these methods do not take into account the features hidden below the coarse granularity, resulting in the selection of a top-heavy subset of features and the loss of many important features. Therefore, this paper proposes a Hierarchical Feature Selection Based on Neighborhood Interclass Spacing From Fine to Coarse (HFSNIS) algorithm, which aims to change the feature selection to the coarse-grained hierarchy. The framework of the HFSNIS algorithm is as follows: First, each fine-grained leaf node is coarsened to the coarsest hierarchy of granularity from fine to coarse, where the non-root ancestor node is located. Next, the search for similar and dissimilar nearest neighbors is performed at the coarsest granularity hierarchy. Finally, the features are filtered using the Neighborhood Interclass Spacing model to obtain a subset of features. Therefore, this HFSNIS algorithm based on the Coarsest Search Strategy (CSS) can reselect features that were previously ignored in the fine-grained hierarchy, resulting in a better feature subset. Finally, the proposed algorithm outperforms seven state-of-the-art feature selection algorithms on six datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助从容的夜梦采纳,获得10
刚刚
刚刚
刚刚
1秒前
小天添发布了新的文献求助10
1秒前
2秒前
山神厘子完成签到,获得积分10
2秒前
3秒前
费小曼完成签到,获得积分10
3秒前
宗宗完成签到 ,获得积分10
3秒前
3秒前
Li656943234完成签到,获得积分10
3秒前
傲娇大雁关注了科研通微信公众号
3秒前
科研通AI2S应助sasa采纳,获得10
3秒前
Hightowerliu18完成签到,获得积分0
4秒前
restudy68完成签到,获得积分10
5秒前
畅跑daily完成签到,获得积分10
5秒前
Summer完成签到,获得积分10
5秒前
5秒前
冷咖啡离开了杯垫完成签到,获得积分10
6秒前
愿爱无忧发布了新的文献求助10
7秒前
实验耗材发布了新的文献求助10
7秒前
Wilson发布了新的文献求助10
8秒前
让时间说真话完成签到,获得积分10
8秒前
芥末完成签到,获得积分10
8秒前
Fei发布了新的文献求助10
8秒前
hello_25baby完成签到,获得积分10
9秒前
AAAAA完成签到,获得积分10
9秒前
闷声发完成签到,获得积分10
9秒前
瘦瘦茗茗完成签到,获得积分10
9秒前
w1x2123完成签到,获得积分10
10秒前
tommorw完成签到 ,获得积分10
10秒前
hh1234完成签到,获得积分10
11秒前
勤恳冰彤关注了科研通微信公众号
11秒前
法克西瓜汁完成签到,获得积分10
12秒前
超级如风完成签到 ,获得积分10
12秒前
热心市民小红花应助hopen采纳,获得10
14秒前
talksilence完成签到,获得积分10
14秒前
SSSstriker完成签到,获得积分10
14秒前
淡然的奎完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 700
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3099914
求助须知:如何正确求助?哪些是违规求助? 2751373
关于积分的说明 7613446
捐赠科研通 2403368
什么是DOI,文献DOI怎么找? 1275253
科研通“疑难数据库(出版商)”最低求助积分说明 616318
版权声明 599053