Hierarchical feature selection based on neighborhood interclass spacing from fine to coarse

特征选择 计算机科学 人工智能 选择(遗传算法) 模式识别(心理学) 特征(语言学) 数据挖掘 数学 机器学习 语言学 哲学
作者
Zilong Lin,Yaojin Lin
出处
期刊:Neurocomputing [Elsevier]
卷期号:575: 127319-127319
标识
DOI:10.1016/j.neucom.2024.127319
摘要

In hierarchical classification learning, the hierarchical feature selection algorithm plays an important role in overcoming the curse of dimensionality. Existing hierarchical feature selection algorithms, based on the granular computing framework, all use three basic search strategies to search for similar and dissimilar classes. These strategies compute the importance of features to the global label for feature selection. However, existing methods based on the sibling strategy can only stay at the fine-grained level for feature selection, often without considering that the fine-grained level is also continuously separated from the coarse-grained level. Thus, these methods do not take into account the features hidden below the coarse granularity, resulting in the selection of a top-heavy subset of features and the loss of many important features. Therefore, this paper proposes a Hierarchical Feature Selection Based on Neighborhood Interclass Spacing From Fine to Coarse (HFSNIS) algorithm, which aims to change the feature selection to the coarse-grained hierarchy. The framework of the HFSNIS algorithm is as follows: First, each fine-grained leaf node is coarsened to the coarsest hierarchy of granularity from fine to coarse, where the non-root ancestor node is located. Next, the search for similar and dissimilar nearest neighbors is performed at the coarsest granularity hierarchy. Finally, the features are filtered using the Neighborhood Interclass Spacing model to obtain a subset of features. Therefore, this HFSNIS algorithm based on the Coarsest Search Strategy (CSS) can reselect features that were previously ignored in the fine-grained hierarchy, resulting in a better feature subset. Finally, the proposed algorithm outperforms seven state-of-the-art feature selection algorithms on six datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xie完成签到 ,获得积分10
2秒前
莫歌完成签到 ,获得积分10
2秒前
流落凡间的迪斯尼王子完成签到,获得积分10
3秒前
莴苣完成签到,获得积分10
3秒前
mjsdx发布了新的文献求助10
3秒前
微醺小王完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
lm0703发布了新的文献求助10
4秒前
4秒前
幸福大碗完成签到,获得积分10
5秒前
微醺小王发布了新的文献求助10
5秒前
欣喜豌豆完成签到,获得积分10
6秒前
杨半鬼发布了新的文献求助20
6秒前
迎南完成签到,获得积分10
6秒前
aaaa完成签到,获得积分10
7秒前
小平发布了新的文献求助10
8秒前
啊TiP完成签到,获得积分10
8秒前
微纳组刘同完成签到,获得积分10
9秒前
DX完成签到,获得积分10
9秒前
勤劳的毛豆完成签到,获得积分10
10秒前
暗枭发布了新的文献求助10
10秒前
爱吃芒果果儿完成签到 ,获得积分10
11秒前
可爱卿完成签到 ,获得积分10
13秒前
SaturnY完成签到,获得积分10
15秒前
AZX加油完成签到,获得积分10
15秒前
JamesPei应助ly采纳,获得10
15秒前
暗枭完成签到,获得积分10
15秒前
1027完成签到 ,获得积分10
16秒前
小平完成签到,获得积分10
16秒前
CodeCraft应助张鱼小丸子采纳,获得10
17秒前
17秒前
悠明夜月完成签到 ,获得积分10
18秒前
sailingluwl完成签到,获得积分10
18秒前
123发布了新的文献求助10
18秒前
研妍完成签到,获得积分10
18秒前
zhukun完成签到,获得积分10
18秒前
隐形曼青应助和谐冬亦采纳,获得10
19秒前
晴空完成签到,获得积分10
19秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180081
求助须知:如何正确求助?哪些是违规求助? 2830441
关于积分的说明 7977245
捐赠科研通 2492017
什么是DOI,文献DOI怎么找? 1329172
科研通“疑难数据库(出版商)”最低求助积分说明 635669
版权声明 602954