Enhancing four-axis machining center accuracy through interactive fusion of spatiotemporal graph convolutional networks and an error-controlled digital twin system

计算机科学 稳健性(进化) 机械加工 图形 人工智能 理论计算机科学 工程类 机械工程 生物化学 基因 化学
作者
Lin Zhang,Chi Ma,Jialan Liu
出处
期刊:Journal of Manufacturing Processes [Elsevier BV]
卷期号:112: 14-31 被引量:13
标识
DOI:10.1016/j.jmapro.2024.01.024
摘要

Mitigating thermal errors constitutes a crucial method for enhancing the machining accuracy of four-axis machining centers. At the heart of effective thermal error control lie the thermal error control platform and a resilient thermal error prediction model. It is imperative to note that thermal errors exhibit intricate dynamic and nonlinear spatiotemporal dependencies. However, prevailing thermal error prediction models tend to primarily focus on temporal features or employ simplistic spatiotemporal characteristics, resulting in diminished accuracy and robustness. Furthermore, the present thermal error compensation system is plagued by a lack of user-friendliness, stemming from its suboptimal execution efficiency. In response to the aforementioned challenges, an innovative approach: the interactive fusion spatiotemporal graph convolutional network is proposed. This novel model is specifically designed to capture the intricate dynamic spatiotemporal dependencies inherent in thermal errors. The interactive fusion spatiotemporal graph convolutional network model consists of three essential components: a bilinear temporal convolutional network, a multi-layer spatiotemporal module, and a linear module. These components work in harmony to comprehensively extract both global and local spatiotemporal features. Subsequently, a mapping relationship between thermal errors and compensation components is established, laying the foundation for theoretical advancements in thermal error compensation within the realm of four-axis machining centers. A digital twin system framework tailored for error control is devised, which leverages cloud-edge computing to enable dynamic control and real-time monitoring of thermal errors. To assess the effectiveness of this digital twin system framework and the interactive fusion spatiotemporal graph convolutional network model, a series of rigorous experiments were conducted. The oriented to error-controlled digital twin system coupled with the interactive fusion spatiotemporal graph convolutional network model yielded exceptional machining accuracy, resulting in minimal geometric disparities of [−3.0 μm, 3.0 μm] for the central hole diameter D and [−3.5 μm, 4.0 μm] for the hole distance H.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴起为你完成签到,获得积分20
刚刚
很酷的妞子完成签到 ,获得积分10
刚刚
abcdefg完成签到,获得积分10
1秒前
优秀的傲南完成签到,获得积分10
2秒前
柚子完成签到,获得积分10
2秒前
qi完成签到,获得积分10
2秒前
3秒前
一只小鲨鱼完成签到,获得积分10
4秒前
Junewill完成签到,获得积分10
4秒前
领导范儿应助马喽打工仔采纳,获得10
4秒前
5秒前
5秒前
Wind0240完成签到,获得积分10
6秒前
alex完成签到,获得积分10
6秒前
ChenChen完成签到,获得积分20
6秒前
养乐多完成签到,获得积分10
6秒前
7秒前
7秒前
淡定自中完成签到 ,获得积分10
7秒前
生动初蓝完成签到,获得积分10
7秒前
胡杨树2006完成签到,获得积分10
8秒前
哈基米德应助dream采纳,获得10
8秒前
oneonlycrown完成签到,获得积分10
9秒前
9秒前
Lyw发布了新的文献求助10
9秒前
lidd完成签到,获得积分10
9秒前
快乐的麦片完成签到 ,获得积分10
10秒前
10秒前
FashionBoy应助隐形的笑白采纳,获得10
10秒前
10秒前
希望天下0贩的0应助h7nho采纳,获得10
10秒前
科研混子表锅完成签到,获得积分10
10秒前
xuexue发布了新的文献求助10
11秒前
cyz完成签到,获得积分10
11秒前
12秒前
勤奋旭尧完成签到,获得积分10
12秒前
zzx完成签到,获得积分10
13秒前
nick完成签到,获得积分10
13秒前
落寞白曼完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044