Impact of Mitochondrial Architecture, Function, Redox Homeostasis, and Quality Control on Organismic Aging: Lessons from a Fungal Model System

柄孢霉 线粒体 生物 细胞生物学 功能(生物学) 活性氧 生物化学 基因 突变体
作者
Heinz D. Osiewacz
出处
期刊:Antioxidants & Redox Signaling [Mary Ann Liebert]
卷期号:40 (16-18): 948-967 被引量:2
标识
DOI:10.1089/ars.2023.0487
摘要

Significance: Mitochondria are eukaryotic organelles with various essential functions. They are both the source and the targets of reactive oxygen species (ROS). Different branches of a mitochondrial quality control system (mQCS), such as ROS balancing, degradation of damaged proteins, or whole mitochondria, can mitigate the adverse effects of ROS stress. However, the capacity of mQCS is limited. Overwhelming this capacity leads to dysfunctions and aging. Strategies to interfere into mitochondria-dependent human aging with the aim to increase the healthy period of life, the health span, rely on the precise knowledge of mitochondrial functions. Experimental models such as Podospora anserina, a filamentous fungus with a clear mitochondrial aging etiology, proved to be instrumental to reach this goal. Recent Advances: Investigations of the P. anserina mQCS revealed that it is constituted by a complex network of different branches. Moreover, mitochondrial architecture and lipid homeostasis emerged to affect aging. Critical Issues: The regulation of the mQCS is only incompletely understood. Details about the involved signaling molecules and interacting pathways remain to be elucidated. Moreover, most of the currently generated experimental data were generated in well-controlled experiments that do not reflect the constantly changing natural life conditions and bear the danger to miss relevant aspects leading to incorrect conclusions. Future Directions: In P. anserina, the precise impact of redox signaling as well as of molecular damaging for aging remains to be defined. Moreover, natural fluctuation of environmental conditions needs to be considered to generate a realistic picture of aging mechanisms as they developed during evolution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
涣醒完成签到,获得积分10
刚刚
sumo驳回了你好应助
刚刚
陈陈陈发布了新的文献求助10
刚刚
刚刚
1秒前
gengwenjing发布了新的文献求助20
1秒前
1秒前
桑尼号发布了新的文献求助10
1秒前
1秒前
咩啊咩吖发布了新的文献求助20
2秒前
ding应助kkk采纳,获得10
2秒前
思考的河苇完成签到,获得积分10
3秒前
Levy发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
zhenzhen发布了新的文献求助10
4秒前
5秒前
6秒前
暮云发布了新的文献求助10
6秒前
乃惜发布了新的文献求助10
7秒前
7秒前
7秒前
白给小王子完成签到,获得积分10
8秒前
蓝颜发布了新的文献求助10
10秒前
10秒前
田様应助大药瓶子采纳,获得30
10秒前
11秒前
英姑应助高高烨磊采纳,获得10
12秒前
zzz发布了新的文献求助10
12秒前
苹果小懒虫应助贝湾采纳,获得10
12秒前
科研通AI2S应助苹果花采纳,获得10
12秒前
14秒前
自行设置发布了新的文献求助10
15秒前
17秒前
17秒前
17秒前
17秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5826235
求助须知:如何正确求助?哪些是违规求助? 6014209
关于积分的说明 15568922
捐赠科研通 4946518
什么是DOI,文献DOI怎么找? 2664888
邀请新用户注册赠送积分活动 1610627
关于科研通互助平台的介绍 1565616