Graph Prompt Learning: A Comprehensive Survey and Beyond

计算机科学 图形 数据科学 图形数据库 理论计算机科学
作者
Xiangguo Sun,Jiawen Zhang,Xixi Wu,Hong Cheng,Yun Xiong,Jia Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.16534
摘要

Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by \url{https://github.com/WxxShirley/Awesome-Graph-Prompt}, and \url{https://github.com/sheldonresearch/ProG}, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星禾吾发布了新的文献求助10
刚刚
Derik完成签到,获得积分10
1秒前
wualexandra完成签到,获得积分10
1秒前
11发布了新的文献求助30
1秒前
打打应助liz采纳,获得10
2秒前
bkagyin应助光亮的听南采纳,获得10
2秒前
lebron完成签到,获得积分20
2秒前
3秒前
六月完成签到,获得积分10
4秒前
lebron发布了新的文献求助10
5秒前
6秒前
7秒前
打打应助六月采纳,获得10
8秒前
不吃草莓味完成签到 ,获得积分10
8秒前
优秀的一整天关注了科研通微信公众号
9秒前
酷波er应助疯狂的碧凡采纳,获得10
11秒前
炙热海云发布了新的文献求助10
11秒前
建新发布了新的文献求助10
11秒前
junyang发布了新的文献求助10
11秒前
jy发布了新的文献求助10
11秒前
7788999发布了新的文献求助10
11秒前
盐汽水完成签到 ,获得积分10
12秒前
丁凛完成签到,获得积分10
14秒前
爱静静应助lebron采纳,获得10
15秒前
16秒前
小二郎应助ronnie采纳,获得10
16秒前
prosperp应助jy采纳,获得10
17秒前
18秒前
小石榴的爸爸完成签到 ,获得积分10
19秒前
脑洞疼应助Polymeryan采纳,获得10
20秒前
anne完成签到 ,获得积分10
20秒前
wb发布了新的文献求助10
21秒前
乐乐应助ZTF采纳,获得10
23秒前
冷静的莞完成签到 ,获得积分10
24秒前
乱世完成签到,获得积分10
24秒前
科研通AI2S应助lebron采纳,获得10
25秒前
25秒前
28秒前
疯狂的碧凡完成签到,获得积分10
31秒前
31秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
RNAの科学 ―時代を拓く生体分子― 金井 昭夫(編) 1000
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3354316
求助须知:如何正确求助?哪些是违规求助? 2978688
关于积分的说明 8686928
捐赠科研通 2660273
什么是DOI,文献DOI怎么找? 1456569
科研通“疑难数据库(出版商)”最低求助积分说明 674407
邀请新用户注册赠送积分活动 665247