Graph Prompt Learning: A Comprehensive Survey and Beyond

计算机科学 图形 数据科学 图形数据库 理论计算机科学
作者
Xiangguo Sun,Jiawen Zhang,Xixi Wu,Hong Cheng,Yun Xiong,Jia Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2311.16534
摘要

Artificial General Intelligence (AGI) has revolutionized numerous fields, yet its integration with graph data, a cornerstone in our interconnected world, remains nascent. This paper presents a pioneering survey on the emerging domain of graph prompts in AGI, addressing key challenges and opportunities in harnessing graph data for AGI applications. Despite substantial advancements in AGI across natural language processing and computer vision, the application to graph data is relatively underexplored. This survey critically evaluates the current landscape of AGI in handling graph data, highlighting the distinct challenges in cross-modality, cross-domain, and cross-task applications specific to graphs. Our work is the first to propose a unified framework for understanding graph prompt learning, offering clarity on prompt tokens, token structures, and insertion patterns in the graph domain. We delve into the intrinsic properties of graph prompts, exploring their flexibility, expressiveness, and interplay with existing graph models. A comprehensive taxonomy categorizes over 100 works in this field, aligning them with pre-training tasks across node-level, edge-level, and graph-level objectives. Additionally, we present, ProG, a Python library, and an accompanying website, to support and advance research in graph prompting. The survey culminates in a discussion of current challenges and future directions, offering a roadmap for research in graph prompting within AGI. Through this comprehensive analysis, we aim to catalyze further exploration and practical applications of AGI in graph data, underlining its potential to reshape AGI fields and beyond. ProG and the website can be accessed by \url{https://github.com/WxxShirley/Awesome-Graph-Prompt}, and \url{https://github.com/sheldonresearch/ProG}, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余一台完成签到 ,获得积分10
1秒前
花花发布了新的文献求助10
1秒前
木子栗关注了科研通微信公众号
1秒前
时光倒流的鱼完成签到,获得积分10
1秒前
2秒前
Shay发布了新的文献求助10
2秒前
4秒前
4秒前
6秒前
6秒前
10秒前
DJ发布了新的文献求助10
10秒前
高会和发布了新的文献求助10
11秒前
二三语逢山外山完成签到 ,获得积分10
12秒前
一群牛关注了科研通微信公众号
12秒前
搜集达人应助认真雅阳采纳,获得10
13秒前
自然秋柳发布了新的文献求助10
13秒前
czx完成签到,获得积分10
14秒前
读研好难发布了新的文献求助10
16秒前
爆米花应助小纯洁采纳,获得10
17秒前
17秒前
ZL完成签到,获得积分10
17秒前
CHENDQ发布了新的文献求助10
17秒前
丘比特应助Sitroul采纳,获得10
18秒前
18秒前
大模型应助自然秋柳采纳,获得10
19秒前
1rd发布了新的文献求助10
19秒前
21秒前
sjxbjrndkd完成签到 ,获得积分10
23秒前
Gao完成签到,获得积分10
25秒前
25秒前
无敌鱼发布了新的文献求助10
26秒前
27秒前
搜集达人应助健忘的白秋采纳,获得30
27秒前
深情安青应助意安采纳,获得10
28秒前
搜集达人应助科研通管家采纳,获得10
28秒前
pluto应助科研通管家采纳,获得10
29秒前
Ava应助科研通管家采纳,获得10
29秒前
甜甜玫瑰应助科研通管家采纳,获得10
29秒前
Owen应助小纯洁采纳,获得10
29秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056002
求助须知:如何正确求助?哪些是违规求助? 2712582
关于积分的说明 7432387
捐赠科研通 2357594
什么是DOI,文献DOI怎么找? 1248929
科研通“疑难数据库(出版商)”最低求助积分说明 606823
版权声明 596195