Inducing spin polarization via Co doping in the BiVO4 cell to enhance the built-in electric field for promotion of photocatalytic CO2 reduction

光催化 兴奋剂 电场 光电流 极化(电化学) 材料科学 偶极子 自旋极化 载流子 光化学 光电子学 化学 纳米技术 催化作用 物理 物理化学 有机化学 生物化学 量子力学 电子
作者
Yujia Liu,Qucheng Deng,Zuofang Yao,Ting Liang,Shiming Zhang,Tingting Zhu,Chenchen Xing,Jinghui Pan,Zebin Yu,Keying Liang,Tao Xie,Rui Li,Yanping Hou
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:664: 500-510 被引量:41
标识
DOI:10.1016/j.jcis.2024.03.078
摘要

The efficiency of CO2 photocatalytic reduction is severely limited by inefficient separation and sluggish transfer. In this study, spin polarization was induced and built-in electric field was strengthened via Co doping in the BiVO4 cell to boost photocatalytic CO2 reduction. Results showed that owing to the generation of spin-polarized electrons upon Co doping, carrier separation and photocurrent production of the Co-doped BiVO4 were enhanced. CO production during CO2 photocatalytic reduction from the Co-BiVO4 was 61.6 times of the BiVO4. Notably, application of an external magnetic field (100 mT) further boosted photocatalytic CO2 reduction from the Co-BiVO4, with 68.25 folds improvement of CO production compared to pristine BiVO4. The existence of a built-in electric field (IEF) was demonstrated through density functional theory (DFT) simulations and kelvin probe force microscopy (KPFM). Mechanism insights could be elucidated as follows: doping of magnetic Co into the BiVO4 resulted in increased the number of spin-polarized photo-excited carriers, and application of a magnetic field led to an augmentation of intrinsic electric field due to a dipole shift, thereby extending carrier lifetime and suppressing charges recombination. Additionally, HCOO- was a crucial intermediate in the process of CO2RR, and possible pathways for CO2 reduction were proposed. This study highlights the significance of built-in electric fields and the important role of spin polarization for promotion of photocatalytic CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
归尘应助麦地娜采纳,获得10
1秒前
寻道图强应助麦地娜采纳,获得30
1秒前
大个应助麦地娜采纳,获得30
1秒前
1秒前
2秒前
2秒前
3秒前
zheng完成签到,获得积分10
3秒前
小张完成签到,获得积分10
4秒前
4秒前
材袅完成签到,获得积分10
5秒前
5秒前
6秒前
乾坤完成签到,获得积分10
8秒前
mengdewen完成签到,获得积分10
8秒前
蒸盐粥发布了新的文献求助10
9秒前
9秒前
tomorrow发布了新的文献求助10
10秒前
10秒前
Ray发布了新的文献求助10
10秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
西西里柠檬完成签到,获得积分10
15秒前
sxmt123456789发布了新的文献求助10
16秒前
美好斓发布了新的文献求助10
16秒前
zhengguolong完成签到,获得积分10
18秒前
优美紫槐发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
sxmt123456789完成签到,获得积分10
21秒前
21秒前
麦地娜发布了新的文献求助30
21秒前
22秒前
22秒前
23秒前
23秒前
24秒前
王王应助kklove采纳,获得20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535