Inducing spin polarization via Co doping in the BiVO4 cell to enhance the built-in electric field for promotion of photocatalytic CO2 reduction

光催化 兴奋剂 电场 光电流 极化(电化学) 材料科学 偶极子 自旋极化 载流子 光化学 光电子学 化学 纳米技术 催化作用 物理 物理化学 有机化学 生物化学 量子力学 电子
作者
Yujia Liu,Qucheng Deng,Zuofang Yao,Ting Liang,Shiming Zhang,Tingting Zhu,Chenchen Xing,Jinghui Pan,Zebin Yu,Keying Liang,Tao Xie,Rui Li,Yanping Hou
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:664: 500-510 被引量:41
标识
DOI:10.1016/j.jcis.2024.03.078
摘要

The efficiency of CO2 photocatalytic reduction is severely limited by inefficient separation and sluggish transfer. In this study, spin polarization was induced and built-in electric field was strengthened via Co doping in the BiVO4 cell to boost photocatalytic CO2 reduction. Results showed that owing to the generation of spin-polarized electrons upon Co doping, carrier separation and photocurrent production of the Co-doped BiVO4 were enhanced. CO production during CO2 photocatalytic reduction from the Co-BiVO4 was 61.6 times of the BiVO4. Notably, application of an external magnetic field (100 mT) further boosted photocatalytic CO2 reduction from the Co-BiVO4, with 68.25 folds improvement of CO production compared to pristine BiVO4. The existence of a built-in electric field (IEF) was demonstrated through density functional theory (DFT) simulations and kelvin probe force microscopy (KPFM). Mechanism insights could be elucidated as follows: doping of magnetic Co into the BiVO4 resulted in increased the number of spin-polarized photo-excited carriers, and application of a magnetic field led to an augmentation of intrinsic electric field due to a dipole shift, thereby extending carrier lifetime and suppressing charges recombination. Additionally, HCOO- was a crucial intermediate in the process of CO2RR, and possible pathways for CO2 reduction were proposed. This study highlights the significance of built-in electric fields and the important role of spin polarization for promotion of photocatalytic CO2 reduction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特的鹅完成签到,获得积分10
刚刚
李健应助川ccc采纳,获得10
1秒前
汉堡包应助浮云采纳,获得10
1秒前
2秒前
Gaojin锦完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
大模型应助杜晓倩采纳,获得10
4秒前
扶光发布了新的文献求助10
5秒前
隐形曼青应助hxj纯法王采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
ZL发布了新的文献求助10
7秒前
默默问柳完成签到,获得积分10
8秒前
负责语海发布了新的文献求助10
8秒前
9秒前
大模型应助YZ采纳,获得10
10秒前
nn发布了新的文献求助10
10秒前
10秒前
11秒前
奋斗的雪曼完成签到,获得积分10
12秒前
发酱完成签到,获得积分10
13秒前
13秒前
CodeCraft应助Marshall采纳,获得10
14秒前
科研通AI2S应助负责语海采纳,获得10
14秒前
白桃汽水发布了新的文献求助20
15秒前
hxj纯法王完成签到,获得积分10
16秒前
17秒前
宝坤关注了科研通微信公众号
17秒前
17秒前
FashionBoy应助bunny采纳,获得10
17秒前
balance完成签到 ,获得积分10
18秒前
杜晓倩发布了新的文献求助10
19秒前
ding应助敏感小熊猫采纳,获得10
19秒前
量子星尘发布了新的文献求助10
19秒前
lx完成签到,获得积分10
20秒前
Akim应助坚强的严青采纳,获得10
20秒前
lx发布了新的文献求助10
22秒前
薛冰雪发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5787270
求助须知:如何正确求助?哪些是违规求助? 5698214
关于积分的说明 15471663
捐赠科研通 4915798
什么是DOI,文献DOI怎么找? 2645932
邀请新用户注册赠送积分活动 1593599
关于科研通互助平台的介绍 1547917