Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 数据库 语言学 哲学 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:424: 116878-116878 被引量:4
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
樱香音子完成签到,获得积分10
刚刚
在水一方应助淡然靖柔采纳,获得10
刚刚
缓慢沁完成签到,获得积分10
1秒前
1秒前
1秒前
孙文昭完成签到,获得积分10
2秒前
毛毛酱完成签到,获得积分20
2秒前
不安囧完成签到,获得积分10
3秒前
4秒前
kw98完成签到 ,获得积分10
4秒前
5秒前
gjl完成签到,获得积分10
6秒前
6秒前
阔达碧空发布了新的文献求助10
6秒前
9秒前
samara发布了新的文献求助10
9秒前
ding应助小八统治世界采纳,获得10
9秒前
12秒前
12秒前
淡然靖柔发布了新的文献求助10
12秒前
Bear完成签到,获得积分10
13秒前
14秒前
15秒前
16秒前
chl发布了新的文献求助10
16秒前
走着完成签到,获得积分10
18秒前
毛毛酱发布了新的文献求助30
19秒前
20秒前
20秒前
21秒前
阴森女公爵关注了科研通微信公众号
21秒前
尼克的朱迪完成签到,获得积分10
22秒前
22秒前
22秒前
23秒前
ttg990720发布了新的文献求助10
23秒前
24秒前
24秒前
有魅力强炫完成签到,获得积分10
24秒前
周涛完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033