清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 语言学 哲学 数据库 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:424: 116878-116878 被引量:12
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十一完成签到,获得积分10
刚刚
26秒前
40秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
wuludie应助科研通管家采纳,获得10
44秒前
wuludie应助科研通管家采纳,获得10
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
wuludie应助科研通管家采纳,获得10
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
颜笙发布了新的文献求助10
45秒前
冷静丸子完成签到 ,获得积分10
53秒前
Blank完成签到 ,获得积分10
1分钟前
何为完成签到 ,获得积分10
1分钟前
彼岸花开完成签到 ,获得积分10
1分钟前
星辰大海应助lei采纳,获得10
1分钟前
笨笨听枫完成签到 ,获得积分10
1分钟前
赘婿应助www采纳,获得10
1分钟前
1分钟前
zjh完成签到,获得积分10
1分钟前
独特纸飞机完成签到 ,获得积分10
1分钟前
林克发布了新的文献求助10
1分钟前
LvCR完成签到 ,获得积分10
1分钟前
隐形曼青应助左白易采纳,获得10
1分钟前
1分钟前
颜笙发布了新的文献求助10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
www发布了新的文献求助10
1分钟前
左白易发布了新的文献求助10
1分钟前
种下梧桐树完成签到 ,获得积分10
2分钟前
追梦完成签到,获得积分10
2分钟前
颜笙完成签到,获得积分10
2分钟前
左白易完成签到,获得积分10
2分钟前
2分钟前
Ray完成签到 ,获得积分10
2分钟前
小小鱼完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
害羞的雁易完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715273
求助须知:如何正确求助?哪些是违规求助? 5232949
关于积分的说明 15274262
捐赠科研通 4866228
什么是DOI,文献DOI怎么找? 2612811
邀请新用户注册赠送积分活动 1562974
关于科研通互助平台的介绍 1520368