Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 语言学 哲学 数据库 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:424: 116878-116878 被引量:4
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨启军完成签到,获得积分10
1秒前
易安发布了新的文献求助10
1秒前
ling完成签到,获得积分10
1秒前
思源应助ylq采纳,获得10
2秒前
Nothing发布了新的文献求助10
2秒前
史永桂发布了新的文献求助10
3秒前
3秒前
有魅力敏完成签到,获得积分10
3秒前
3秒前
4秒前
meimei完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
领导范儿应助ling采纳,获得10
5秒前
6秒前
orixero应助自然有手就行采纳,获得10
6秒前
6秒前
6秒前
1111应助tina采纳,获得10
7秒前
华仔应助hua采纳,获得10
7秒前
福馨馨完成签到,获得积分10
7秒前
7秒前
8秒前
姜依晨关注了科研通微信公众号
8秒前
8秒前
8秒前
杨启军发布了新的文献求助10
8秒前
9秒前
柴柴子发布了新的文献求助30
9秒前
浅色墨水发布了新的文献求助10
10秒前
星辰大海应助汤振杰采纳,获得30
10秒前
10秒前
11秒前
11秒前
zeng发布了新的文献求助10
11秒前
乐乐应助天涯采纳,获得10
11秒前
12秒前
12秒前
12秒前
hu发布了新的文献求助10
12秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271