Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 数据库 语言学 哲学 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:424: 116878-116878 被引量:4
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
hover完成签到,获得积分10
14秒前
whitepiece完成签到,获得积分10
15秒前
HY完成签到 ,获得积分10
16秒前
PHI完成签到 ,获得积分10
17秒前
leslieo3o发布了新的文献求助20
18秒前
zhuxd完成签到 ,获得积分10
23秒前
zhangjw完成签到 ,获得积分10
25秒前
上善若水完成签到 ,获得积分10
38秒前
天将明完成签到 ,获得积分10
40秒前
Ning完成签到 ,获得积分10
41秒前
思源应助筱奇采纳,获得10
41秒前
聪慧芷巧完成签到,获得积分10
42秒前
南宫士晋完成签到 ,获得积分10
43秒前
平常的三问完成签到 ,获得积分10
45秒前
831143完成签到 ,获得积分0
1分钟前
害羞的雁易完成签到 ,获得积分10
1分钟前
ZH完成签到,获得积分10
1分钟前
音殿完成签到 ,获得积分10
1分钟前
浮游应助欧阳采纳,获得10
1分钟前
xiaoqiang009完成签到 ,获得积分10
1分钟前
sunnyqqz完成签到,获得积分10
1分钟前
1分钟前
1分钟前
WilliamJarvis完成签到 ,获得积分10
1分钟前
1797472009完成签到 ,获得积分10
1分钟前
roundtree完成签到 ,获得积分0
1分钟前
lling完成签到 ,获得积分10
1分钟前
归尘发布了新的文献求助10
1分钟前
春花完成签到,获得积分10
1分钟前
潇洒的语蝶完成签到 ,获得积分10
1分钟前
三脸茫然完成签到 ,获得积分0
1分钟前
铜豌豆完成签到 ,获得积分10
1分钟前
唐唐完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得40
1分钟前
1分钟前
1分钟前
啦啦啦完成签到 ,获得积分10
1分钟前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The New Psychology of Health 500
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5200542
求助须知:如何正确求助?哪些是违规求助? 4380655
关于积分的说明 13639485
捐赠科研通 4237506
什么是DOI,文献DOI怎么找? 2324789
邀请新用户注册赠送积分活动 1322760
关于科研通互助平台的介绍 1274457