Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 语言学 哲学 数据库 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:424: 116878-116878 被引量:12
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助Lmj采纳,获得10
刚刚
布布完成签到,获得积分10
1秒前
领导范儿应助名副棋实采纳,获得10
1秒前
Wlin完成签到,获得积分10
1秒前
1秒前
kmkz发布了新的文献求助10
2秒前
lidada发布了新的文献求助100
2秒前
莫谷蓝完成签到,获得积分10
2秒前
2秒前
泡泡发布了新的文献求助10
3秒前
大力的宝川完成签到 ,获得积分10
3秒前
嫤姝完成签到,获得积分10
3秒前
9700发布了新的文献求助10
3秒前
zywzyw发布了新的文献求助10
3秒前
沈华炜完成签到,获得积分10
3秒前
4秒前
孙pc发布了新的文献求助30
4秒前
4秒前
善学以致用应助Wlin采纳,获得10
4秒前
琳琳完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
5秒前
Ava应助奋斗静蕾采纳,获得10
5秒前
Trost发布了新的文献求助30
6秒前
李健应助无辜的薯片采纳,获得10
6秒前
某亮发布了新的文献求助10
6秒前
6秒前
pxwhhh完成签到,获得积分10
6秒前
小橙完成签到,获得积分10
7秒前
发AM完成签到 ,获得积分10
7秒前
梧桐完成签到,获得积分10
7秒前
Hello应助wsafhgfjb采纳,获得10
7秒前
8秒前
0per完成签到,获得积分10
8秒前
李健的小迷弟应助tgh采纳,获得10
8秒前
秦从露完成签到,获得积分10
8秒前
8秒前
8秒前
树夏发布了新的文献求助10
9秒前
vv完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997