Prediction of microstructural-dependent mechanical properties, progressive damage, and stress distribution from X-ray computed tomography scans using a deep learning workflow

卷积神经网络 深度学习 工作流程 人工智能 计算机科学 压力(语言学) 材料科学 领域(数学) 有限元法 机器学习 结构工程 工程类 数学 语言学 哲学 数据库 纯数学
作者
Mohammad Rezasefat,Haoyang Li,James D. Hogan
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier]
卷期号:424: 116878-116878 被引量:12
标识
DOI:10.1016/j.cma.2024.116878
摘要

Creating computationally efficient models that link processing methods, material structures, and properties is essential for the development of new materials. Translating microstructural details to macro-level mechanical properties often proves to be an arduous challenge. This paper introduces a novel deep learning-based framework to predict 3D material stress fields, mechanical behavior, and progressive damage in ceramic materials informed by the microstructural features of the material. We construct a dataset of synthetic representative volume elements utilizing X-ray computed tomography scans and employ an automated finite element (FE) modeling approach to generate datasets of alumina ceramics with varying inclusion morphologies. The deep learning model, a U-Net based convolutional neural network (CNN), is trained to understand the structure-property linkages and mechanical responses directly from FE-generated data without transforming them into image format. The CNN's architecture is optimized for capturing both local and global contextual information from the microstructural data, enabling accurate prediction of stress fields and damage evolution. Inclusions within the material are shown to play a crucial role in the initiation and propagation of damage. The CNN model demonstrated robust performance in predicting the stress field, stress-strain curve, and progressive damage curve, with training and test data both showing high and consistent similarity between predictions and the ground truth. Overall, this research offers a generalized approach that can be adapted for different materials and structures toward creating efficient and accurate digital replicas for optimizing material performance in real-world applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fish发布了新的文献求助10
刚刚
Stealer发布了新的文献求助10
1秒前
azami发布了新的文献求助10
2秒前
2秒前
光之战士完成签到 ,获得积分10
3秒前
3秒前
4秒前
Shawn发布了新的文献求助10
4秒前
脑洞疼应助doctorw采纳,获得10
4秒前
bbb完成签到,获得积分10
4秒前
乐乐应助仵一采纳,获得10
6秒前
6秒前
7秒前
苗苗完成签到,获得积分10
7秒前
Ayna发布了新的文献求助10
7秒前
晚香玉发布了新的文献求助10
7秒前
7秒前
红叶完成签到,获得积分10
8秒前
3D发布了新的文献求助10
10秒前
ss_hHe发布了新的文献求助10
10秒前
苗苗发布了新的文献求助10
10秒前
11秒前
11秒前
赘婿应助azami采纳,获得10
11秒前
三席发布了新的文献求助50
11秒前
xhq发布了新的文献求助10
12秒前
所所应助明天会早睡的采纳,获得10
12秒前
12秒前
希希发布了新的文献求助10
13秒前
Moro发布了新的文献求助10
15秒前
15秒前
爱听歌的白开水完成签到 ,获得积分20
16秒前
狂野的友灵完成签到 ,获得积分10
16秒前
16秒前
小小康康完成签到,获得积分10
16秒前
16秒前
迷路雨寒发布了新的文献求助30
17秒前
李梦媛发布了新的文献求助10
18秒前
外向的口红完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661