Relaxed Energy Preserving Hashing for Image Retrieval

散列函数 双重哈希 计算机科学 动态完美哈希 特征哈希 通用哈希 哈希表 哈希链 滚动哈希 线性哈希 理论计算机科学 人工智能 计算机安全
作者
Yuan Sun,Jian Dai,Zhenwen Ren,Qilin Li,Dezhong Peng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7388-7400 被引量:7
标识
DOI:10.1109/tits.2024.3351841
摘要

Image retrieval is the eye of industrial robots, which determines the performance of machine visual search, street view search, and object grasping. Learning to hash, as a promising technique, has attracted much attention. Existing image hashing methods often directly learn hash codes by a single hash function. Despite their success, they suffer from the following limits: 1) It is difficult to perfectly preserve the intrinsic structure of the data using a single-layer hash function to generate discriminative hash codes; 2) they unconsciously ignore the main energy information of the original data, which lead to severe information loss of low-dimensional hash codes. To alleviate these issues, we propose a concise yet effective Relaxed Energy Preserving Hashing (REPH) method. Specifically, we utilize a two-layer hash function to provide more flexibility, thereby learning discriminant hash codes. The first-layer hash function projects the image data into a transition space, and the second-layer hash function narrows the semantic gap between features and hash codes. Then, we propose an energy preserving strategy to retain the energy of the original data in the transition space, thereby alleviating the energy loss of hash projecting. Moreover, the semantic reconstruction mechanism is proposed to guarantee the semantic information can be well preserved into hash codes. Extensive experiments demonstrate the superior performance of the proposed REPH on five real-world image datasets. Our source code has been released at https://github.com/sunyuan-cs/REPH_main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
水水关注了科研通微信公众号
1秒前
JMG完成签到,获得积分10
1秒前
顾矜应助启程牛牛采纳,获得30
2秒前
脑洞疼应助与可采纳,获得10
3秒前
tzhzh8完成签到,获得积分10
3秒前
goldenfleece完成签到,获得积分10
3秒前
3秒前
赘婿应助kai采纳,获得10
4秒前
yyy完成签到,获得积分10
5秒前
研友_LwbGg8发布了新的文献求助10
5秒前
慕青应助慧慧采纳,获得10
6秒前
6秒前
风中的采波完成签到,获得积分10
7秒前
雨馀云发布了新的文献求助30
7秒前
领导范儿应助124cndhaP采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
Yu完成签到,获得积分20
8秒前
英俊的铭应助喝一碗粥采纳,获得10
8秒前
8秒前
心灵美的皮皮虾完成签到,获得积分10
9秒前
9秒前
研友_LwbGg8完成签到,获得积分10
9秒前
9秒前
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得30
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
ZZ发布了新的文献求助30
12秒前
12秒前
月亮打烊了完成签到,获得积分10
13秒前
缥缈的乌冬面完成签到 ,获得积分10
13秒前
13秒前
14秒前
慕青应助鱼没有jio采纳,获得10
14秒前
15秒前
羽毛发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951219
求助须知:如何正确求助?哪些是违规求助? 3496615
关于积分的说明 11083276
捐赠科研通 3227034
什么是DOI,文献DOI怎么找? 1784184
邀请新用户注册赠送积分活动 868252
科研通“疑难数据库(出版商)”最低求助积分说明 801091