Relaxed Energy Preserving Hashing for Image Retrieval

散列函数 双重哈希 计算机科学 动态完美哈希 特征哈希 通用哈希 哈希表 哈希链 滚动哈希 线性哈希 理论计算机科学 人工智能 计算机安全
作者
Yuan Sun,Jian Dai,Zhenwen Ren,Qilin Li,Dezhong Peng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7388-7400 被引量:7
标识
DOI:10.1109/tits.2024.3351841
摘要

Image retrieval is the eye of industrial robots, which determines the performance of machine visual search, street view search, and object grasping. Learning to hash, as a promising technique, has attracted much attention. Existing image hashing methods often directly learn hash codes by a single hash function. Despite their success, they suffer from the following limits: 1) It is difficult to perfectly preserve the intrinsic structure of the data using a single-layer hash function to generate discriminative hash codes; 2) they unconsciously ignore the main energy information of the original data, which lead to severe information loss of low-dimensional hash codes. To alleviate these issues, we propose a concise yet effective Relaxed Energy Preserving Hashing (REPH) method. Specifically, we utilize a two-layer hash function to provide more flexibility, thereby learning discriminant hash codes. The first-layer hash function projects the image data into a transition space, and the second-layer hash function narrows the semantic gap between features and hash codes. Then, we propose an energy preserving strategy to retain the energy of the original data in the transition space, thereby alleviating the energy loss of hash projecting. Moreover, the semantic reconstruction mechanism is proposed to guarantee the semantic information can be well preserved into hash codes. Extensive experiments demonstrate the superior performance of the proposed REPH on five real-world image datasets. Our source code has been released at https://github.com/sunyuan-cs/REPH_main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QQ发布了新的文献求助10
刚刚
1秒前
1秒前
高大夏柳发布了新的文献求助10
1秒前
yym发布了新的文献求助10
1秒前
小马甲应助kaj采纳,获得10
2秒前
CipherSage应助雨眠采纳,获得10
2秒前
2秒前
xy完成签到,获得积分20
2秒前
传奇3应助mm采纳,获得10
3秒前
Hello应助wangyuchen采纳,获得10
3秒前
3秒前
SherlockRobin完成签到,获得积分10
4秒前
4秒前
4秒前
顾越完成签到,获得积分10
4秒前
彭于彦祖应助nnnd77采纳,获得150
4秒前
林zp完成签到,获得积分10
5秒前
公孙朝雨完成签到,获得积分10
5秒前
NexusExplorer应助prettymud采纳,获得10
5秒前
jufefit完成签到,获得积分10
5秒前
科研通AI6应助极光采纳,获得10
5秒前
汉堡包应助芬达采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
宋紫馨关注了科研通微信公众号
6秒前
wanci应助雪碧采纳,获得10
7秒前
7秒前
难过白易发布了新的文献求助10
7秒前
露露发布了新的文献求助10
8秒前
董先生发布了新的文献求助10
8秒前
英姑应助QQ采纳,获得10
9秒前
Zkxxxx完成签到,获得积分10
9秒前
焚天尘殇发布了新的文献求助10
9秒前
9秒前
李健的小迷弟应助麻球采纳,获得10
10秒前
结实的栾发布了新的文献求助10
10秒前
10秒前
10秒前
执着谷兰发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
《2023南京市住宿行业发展报告》 500
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4874504
求助须知:如何正确求助?哪些是违规求助? 4163770
关于积分的说明 12915000
捐赠科研通 3920917
什么是DOI,文献DOI怎么找? 2152576
邀请新用户注册赠送积分活动 1170846
关于科研通互助平台的介绍 1074699