Relaxed Energy Preserving Hashing for Image Retrieval

散列函数 双重哈希 计算机科学 动态完美哈希 特征哈希 通用哈希 哈希表 哈希链 滚动哈希 线性哈希 理论计算机科学 人工智能 计算机安全
作者
Yuan Sun,Jian Dai,Zhenwen Ren,Qilin Li,Dezhong Peng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7388-7400 被引量:15
标识
DOI:10.1109/tits.2024.3351841
摘要

Image retrieval is the eye of industrial robots, which determines the performance of machine visual search, street view search, and object grasping. Learning to hash, as a promising technique, has attracted much attention. Existing image hashing methods often directly learn hash codes by a single hash function. Despite their success, they suffer from the following limits: 1) It is difficult to perfectly preserve the intrinsic structure of the data using a single-layer hash function to generate discriminative hash codes; 2) they unconsciously ignore the main energy information of the original data, which lead to severe information loss of low-dimensional hash codes. To alleviate these issues, we propose a concise yet effective Relaxed Energy Preserving Hashing (REPH) method. Specifically, we utilize a two-layer hash function to provide more flexibility, thereby learning discriminant hash codes. The first-layer hash function projects the image data into a transition space, and the second-layer hash function narrows the semantic gap between features and hash codes. Then, we propose an energy preserving strategy to retain the energy of the original data in the transition space, thereby alleviating the energy loss of hash projecting. Moreover, the semantic reconstruction mechanism is proposed to guarantee the semantic information can be well preserved into hash codes. Extensive experiments demonstrate the superior performance of the proposed REPH on five real-world image datasets. Our source code has been released at https://github.com/sunyuan-cs/REPH_main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
dangdanghong完成签到,获得积分20
刚刚
王小赵完成签到,获得积分10
1秒前
2秒前
帅气鹭洋发布了新的文献求助10
4秒前
ymj完成签到,获得积分10
5秒前
夕荀发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
CipherSage应助自由雨莲采纳,获得10
7秒前
SciGPT应助詹芷珊采纳,获得10
8秒前
10秒前
Owen应助大方小白采纳,获得10
10秒前
11秒前
王手发布了新的文献求助10
11秒前
lena完成签到,获得积分20
11秒前
茹茹发布了新的文献求助10
12秒前
12秒前
科研通AI6应助欢呼的飞荷采纳,获得10
12秒前
缓慢思枫完成签到,获得积分10
13秒前
无辜的蜗牛完成签到 ,获得积分10
13秒前
克西发布了新的文献求助20
15秒前
追寻荔枝完成签到,获得积分20
16秒前
17秒前
17秒前
陈xx完成签到,获得积分10
18秒前
19秒前
Ryubot完成签到,获得积分10
21秒前
21秒前
搞怪的易槐完成签到,获得积分10
21秒前
追寻荔枝发布了新的文献求助10
21秒前
恩柳画桥发布了新的文献求助10
21秒前
小周发布了新的文献求助10
24秒前
24秒前
哈哈哈完成签到,获得积分20
25秒前
Jasper应助xxx采纳,获得10
26秒前
Krsky完成签到,获得积分10
31秒前
Sy完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370