Relaxed Energy Preserving Hashing for Image Retrieval

散列函数 双重哈希 计算机科学 动态完美哈希 特征哈希 通用哈希 哈希表 哈希链 滚动哈希 线性哈希 理论计算机科学 人工智能 计算机安全
作者
Yuan Sun,Jian Dai,Zhenwen Ren,Qilin Li,Dezhong Peng
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (7): 7388-7400 被引量:7
标识
DOI:10.1109/tits.2024.3351841
摘要

Image retrieval is the eye of industrial robots, which determines the performance of machine visual search, street view search, and object grasping. Learning to hash, as a promising technique, has attracted much attention. Existing image hashing methods often directly learn hash codes by a single hash function. Despite their success, they suffer from the following limits: 1) It is difficult to perfectly preserve the intrinsic structure of the data using a single-layer hash function to generate discriminative hash codes; 2) they unconsciously ignore the main energy information of the original data, which lead to severe information loss of low-dimensional hash codes. To alleviate these issues, we propose a concise yet effective Relaxed Energy Preserving Hashing (REPH) method. Specifically, we utilize a two-layer hash function to provide more flexibility, thereby learning discriminant hash codes. The first-layer hash function projects the image data into a transition space, and the second-layer hash function narrows the semantic gap between features and hash codes. Then, we propose an energy preserving strategy to retain the energy of the original data in the transition space, thereby alleviating the energy loss of hash projecting. Moreover, the semantic reconstruction mechanism is proposed to guarantee the semantic information can be well preserved into hash codes. Extensive experiments demonstrate the superior performance of the proposed REPH on five real-world image datasets. Our source code has been released at https://github.com/sunyuan-cs/REPH_main.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鳗鱼灵寒完成签到 ,获得积分10
刚刚
1秒前
1秒前
从这完成签到,获得积分10
1秒前
乐乱发布了新的文献求助10
1秒前
铁匠完成签到,获得积分10
1秒前
1秒前
2秒前
慕青应助抓恐龙采纳,获得10
2秒前
伶俐的不尤完成签到,获得积分20
2秒前
2秒前
zhouyan完成签到,获得积分10
3秒前
老疯智完成签到,获得积分10
3秒前
夜已深完成签到,获得积分10
3秒前
ZXneuro完成签到,获得积分10
3秒前
3秒前
一平发布了新的文献求助10
4秒前
爱吃泡芙完成签到,获得积分10
4秒前
4秒前
Ll发布了新的文献求助10
5秒前
集力申完成签到,获得积分10
5秒前
老疯智发布了新的文献求助10
5秒前
5秒前
宇文青寒完成签到,获得积分10
6秒前
6秒前
心灵美的抽屉完成签到,获得积分10
6秒前
圣晟胜发布了新的文献求助10
7秒前
April发布了新的文献求助10
7秒前
小二郎应助xxxidgkris采纳,获得30
7秒前
南瓜头完成签到 ,获得积分10
7秒前
南瓜头完成签到 ,获得积分10
7秒前
SciGPT应助ys20001采纳,获得30
8秒前
王瑞华发布了新的文献求助10
8秒前
8秒前
721发布了新的文献求助10
8秒前
8秒前
8秒前
希望天下0贩的0应助千幻采纳,获得10
9秒前
葳蕤苍生完成签到,获得积分10
9秒前
斑比完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672