木聚糖
木质素
复合数
化学
纳米颗粒
聚合物
无定形固体
化学工程
材料科学
多糖
复合材料
有机化学
纳米技术
工程类
作者
Xin Qi,Huiwen Li,Wan Sun,Xuezhi Li,Xianqin Lu,Jian Zhao
标识
DOI:10.1016/j.ijbiomac.2024.129762
摘要
Lignin, as an amorphous three-dimensional aromatic polymer, was able to self-assemble into lignin nanoparticles (LNPs) to realize valorization of lignin. Here, lignin-xylan extractives were extracted from grape seed (GS) and poplar by acidic THF at room temperature, and effectively produced lignin-xylan nanospheres via spin evaporation. The morphology and chemical properties of nanospheres were determined by its natural origins, consequently influencing its application. For the lignin-xylan extractive from grape seed, the lignin was composed of guaiacyl (G) and p-hydroxylphenyl (H) units and the hollowed nanospheres (GS-LNPs) with 362.72 nm diameter was produced. The extractive from poplar was composed of G-syringyl (S) typed lignin (80.30 %) and xylan (12.33 %), that can assemble into LNPs with smaller size (229.87 nm), better PDI (0.1), and light color. The hybrid particles showed the qualities of lignin and xylan, that properties led to the LNPs@PVA composite films with UV-blocking capability, strong mechanical strength and hydrophobicity, and transparency ability of visible light. P-LNPs showed better performance as the film additives, due to its lower particles size and high content of unconjugated -OH from xylan. Xylan was significant in the composite films, and lowering the xylan content resulted in the decrease of the composite film's mechanical properties and hydrophobicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI