已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Simulation of Hypervelocity Water Entry by Spherical Projectiles

超高速 射弹 航空航天工程 材料科学 天体生物学 计算机科学 物理 工程类 天文 冶金
作者
Joshua Byron Smith,Manuel Viqueira-Moreira,Christoph Brehm,Bryan E. Schmidt
标识
DOI:10.2514/6.2024-2724
摘要

Hypervelocity water entry of a projectile through a free surface is an important problem with little available experimental data in the literature and largely unvalidated numerical techniques. In preparation for a planned experimental campaign using spherical projectiles, this study examines a novel numerical approach implemented in the CFD code CHAMPS by comparing it to existing experimental and numerical studies. The shock front depth was well captured when compared to an experimental image, but there was disagreement in the projectile depth. In comparison to previous numerical studies, the evolution of the peak pressure compared well for a supersonic case, but was over-predicted for a subsonic case. More investigation into these discrepancies with previous studies is needed, but may be related to the different equations of state used in the studies. It was also found that the pressure jump across the shock front increases with the initial velocity as a power law with an exponent of 2.9, and both the shock pressure jump and the average initial shock velocity tend to increase with the projectile diameter. The pressure was also found to fall off more steeply in the axial direction than radially as a function of distance from the projectile. In addition, the stiffened gas, IAPWS-95, and NASG equations of state were compared in shock tube simulations where it was found that while all three qualitatively captured the same shock and expansion wave structure, the shock speed was found to increase from the stiffened gas, to the NASG, to the IAPWS-95 solutions, respectively. This increase in shock speed is likely due to the inclusion of covolume and other physical effects in the more complex equations of state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
超级的新晴完成签到,获得积分10
3秒前
4秒前
5秒前
Picky完成签到,获得积分10
5秒前
edmund完成签到 ,获得积分10
6秒前
7秒前
852应助YY采纳,获得30
7秒前
罗乐天完成签到,获得积分10
8秒前
忽晚完成签到 ,获得积分10
9秒前
罗乐天发布了新的文献求助10
11秒前
充电宝应助Bailey采纳,获得10
12秒前
Tanya47应助zhangjianan采纳,获得10
13秒前
哇塞的发布了新的文献求助10
14秒前
清秀的小刺猬应助施少雄采纳,获得10
14秒前
15秒前
妮妮完成签到,获得积分20
17秒前
总是很简单完成签到 ,获得积分10
18秒前
科研通AI6应助hermitLee采纳,获得10
18秒前
ontheway发布了新的文献求助10
20秒前
21秒前
21秒前
22秒前
24秒前
24秒前
Bailey发布了新的文献求助10
24秒前
Xzj发布了新的文献求助10
25秒前
25秒前
An完成签到,获得积分20
27秒前
yyh发布了新的文献求助10
30秒前
阿星完成签到,获得积分10
30秒前
温暖书文发布了新的文献求助10
30秒前
明昼完成签到,获得积分10
31秒前
三维码完成签到,获得积分10
32秒前
88C真是太神奇啦完成签到 ,获得积分10
35秒前
35秒前
善良的花菜完成签到 ,获得积分10
36秒前
36秒前
huishoushen完成签到 ,获得积分10
37秒前
科研通AI2S应助FLY采纳,获得10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650260
求助须知:如何正确求助?哪些是违规求助? 4780326
关于积分的说明 15051616
捐赠科研通 4809184
什么是DOI,文献DOI怎么找? 2572075
邀请新用户注册赠送积分活动 1528266
关于科研通互助平台的介绍 1487102