Simulation of Hypervelocity Water Entry by Spherical Projectiles

超高速 射弹 航空航天工程 材料科学 天体生物学 计算机科学 物理 工程类 天文 冶金
作者
J. L. Smith,Manuel Viqueira-Moreira,Christoph Brehm,Bryan E. Schmidt
标识
DOI:10.2514/6.2024-2724
摘要

Hypervelocity water entry of a projectile through a free surface is an important problem with little available experimental data in the literature and largely unvalidated numerical techniques. In preparation for a planned experimental campaign using spherical projectiles, this study examines a novel numerical approach implemented in the CFD code CHAMPS by comparing it to existing experimental and numerical studies. The shock front depth was well captured when compared to an experimental image, but there was disagreement in the projectile depth. In comparison to previous numerical studies, the evolution of the peak pressure compared well for a supersonic case, but was over-predicted for a subsonic case. More investigation into these discrepancies with previous studies is needed, but may be related to the different equations of state used in the studies. It was also found that the pressure jump across the shock front increases with the initial velocity as a power law with an exponent of 2.9, and both the shock pressure jump and the average initial shock velocity tend to increase with the projectile diameter. The pressure was also found to fall off more steeply in the axial direction than radially as a function of distance from the projectile. In addition, the stiffened gas, IAPWS-95, and NASG equations of state were compared in shock tube simulations where it was found that while all three qualitatively captured the same shock and expansion wave structure, the shock speed was found to increase from the stiffened gas, to the NASG, to the IAPWS-95 solutions, respectively. This increase in shock speed is likely due to the inclusion of covolume and other physical effects in the more complex equations of state.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan完成签到,获得积分10
刚刚
英俊牛排完成签到,获得积分10
刚刚
1秒前
温酒随行发布了新的文献求助10
1秒前
赤兔发布了新的文献求助10
1秒前
沉默的云朵完成签到,获得积分10
1秒前
小马甲应助珍惜采纳,获得10
1秒前
好困发布了新的文献求助10
2秒前
Nyxia发布了新的文献求助10
2秒前
3秒前
白秋雪完成签到,获得积分10
3秒前
4秒前
Jally发布了新的文献求助10
4秒前
4秒前
可乐完成签到,获得积分20
4秒前
跳跃凡桃发布了新的文献求助10
5秒前
5秒前
芒晨牧微完成签到,获得积分10
5秒前
小雨发布了新的文献求助10
6秒前
蛰伏的小宇宙完成签到,获得积分10
6秒前
呦呦呵呵完成签到,获得积分10
6秒前
苻涵菡完成签到,获得积分10
6秒前
7秒前
SS1988发布了新的文献求助10
7秒前
8秒前
8秒前
靳晗聪123关注了科研通微信公众号
9秒前
Xx完成签到,获得积分10
9秒前
wwww发布了新的文献求助10
9秒前
mumufan完成签到,获得积分10
9秒前
顾矜应助知性的飞瑶采纳,获得10
9秒前
10秒前
Abi发布了新的文献求助10
10秒前
10秒前
隐形曼青应助勤劳影子采纳,获得30
10秒前
落木发布了新的文献求助10
11秒前
李健应助科研通管家采纳,获得30
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246