Active uncertainty reduction for safe and efficient interaction planning: A shielding-aware dual control approach

计算机科学 模型预测控制 机器人 对偶(语法数字) 还原(数学) 水准点(测量) 人工智能 控制(管理) 艺术 几何学 文学类 数学 大地测量学 地理
作者
Haimin Hu,David Isele,Sangjae Bae,Jaime F. Fisac
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
被引量:2
标识
DOI:10.1177/02783649231215371
摘要

The ability to accurately predict others’ behavior is central to the safety and efficiency of robotic systems in interactive settings, such as human–robot interaction and multi-robot teaming tasks. Unfortunately, robots often lack access to key information on which these predictions may hinge, such as other agents’ goals, attention, and willingness to cooperate. Dual control theory addresses this challenge by treating unknown parameters of a predictive model as stochastic hidden states and inferring their values at runtime using information gathered during system operation. While able to optimally and automatically trade off exploration and exploitation, dual control is computationally intractable for general interactive motion planning, mainly due to the fundamental coupling between the robot’s trajectory plan and its prediction of other agents’ intent. In this paper, we present a novel algorithmic approach to enable active uncertainty reduction for interactive motion planning based on the implicit dual control paradigm. Our approach relies on sampling-based approximation of stochastic dynamic programming, leading to a model predictive control problem that can be readily solved by real-time gradient-based optimization methods. The resulting policy is shown to preserve the dual control effect for a broad class of predictive models with both continuous and categorical uncertainty. To ensure the safe operation of the interacting agents, we use a runtime safety filter (also referred to as a “shielding” scheme), which overrides the robot’s dual control policy with a safety fallback strategy when a safety-critical event is imminent. We then augment the dual control framework with an improved variant of the recently proposed shielding-aware robust planning scheme, which proactively balances the nominal planning performance with the risk of high-cost emergency maneuvers triggered by low-probability agent behaviors. We demonstrate the efficacy of our approach with both simulated driving studies and hardware experiments using 1/10 scale autonomous vehicles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
科研通AI5应助俊逸的翠容采纳,获得10
1秒前
ycliu发布了新的文献求助30
2秒前
2秒前
今后应助伯云采纳,获得10
2秒前
科研通AI5应助周游采纳,获得30
2秒前
3秒前
健壮的芹菜给健壮的芹菜的求助进行了留言
6秒前
7秒前
9秒前
10秒前
hachii完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
迷你的听荷完成签到,获得积分10
12秒前
12秒前
Miller应助克瑞吉海绵宝宝采纳,获得20
13秒前
13秒前
蓝色条纹衫完成签到 ,获得积分10
14秒前
Hedy发布了新的文献求助30
16秒前
爱吃百香果完成签到,获得积分20
16秒前
浮光发布了新的文献求助10
16秒前
16秒前
17秒前
CL完成签到,获得积分10
18秒前
18秒前
19秒前
潇洒的初柔关注了科研通微信公众号
20秒前
量子星尘发布了新的文献求助30
20秒前
科研通AI5应助大黄采纳,获得10
21秒前
21秒前
我是老大应助蝌蚪采纳,获得10
22秒前
lxlcx发布了新的文献求助10
23秒前
24秒前
24秒前
大力黑米完成签到 ,获得积分10
24秒前
豆子发布了新的文献求助10
25秒前
27秒前
fshadow完成签到,获得积分10
28秒前
烛黎完成签到,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3667773
求助须知:如何正确求助?哪些是违规求助? 3226242
关于积分的说明 9768746
捐赠科研通 2936222
什么是DOI,文献DOI怎么找? 1608301
邀请新用户注册赠送积分活动 759615
科研通“疑难数据库(出版商)”最低求助积分说明 735407