MICU: Image super-resolution via multi-level information compensation and U-net

计算机科学 人工智能 频道(广播) 卷积神经网络 模式识别(心理学) 特征(语言学) 特征提取 峰值信噪比 迭代重建 图像压缩 相似性(几何) 压缩传感 计算机视觉 人工神经网络 图像(数学) 图像处理 电信 哲学 语言学
作者
Yuantao Chen,Runlong Xia,Kai Yang,Ke Zou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123111-123111 被引量:53
标识
DOI:10.1016/j.eswa.2023.123111
摘要

Recently, Deep Convolutional Neural Networks have demonstrated high-quality reconstruction in image super-resolution procedure. In this paper, we propose improved image super-resolution reconstruction via multi-level information compensation and U-Net network to address the problem that the image super-resolution reconstruction algorithm based on deep neural networks tends to lose feature information in the feature extraction process, resulting in the lack of texture and edge details in the reconstructed image. Firstly, we design the U-net like network for image super-resolution reconstruction, which performs multi-level feature extraction and channel compression for the input features through the down-channel branch. It fuses the compressed features and extracts the correlation features of different channels through the bottom module, and performs multi-level feature extraction and channel recovery for the compressed correlation features through the up-channel branch. The multi-level information compensation model is then designed to compensate for the information lost in the channel compression process and the information that is difficult to recover in the channel recovery process of U-net like network. The experimental results can show that the proposed algorithm achieves a significant improvement in Peak Signal-to-Noise Ratio and Structure Similarity Index and visual effect compared with the state-of-arts algorithms. The average experimental results of PSNR from proposed method had improved by 1.63 dB, 1.53 dB, 0.97 dB and 0.94 dB compared to SRCNN, HAT, DAT and CARN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
joanna0932完成签到,获得积分10
1秒前
坚定亦竹完成签到,获得积分10
2秒前
mia完成签到,获得积分20
2秒前
2秒前
2秒前
CodeCraft应助zxx5012采纳,获得10
2秒前
4秒前
paparazzi221发布了新的文献求助10
4秒前
笑点低的大有完成签到 ,获得积分10
5秒前
孔小白发布了新的文献求助10
6秒前
6秒前
stephanie96发布了新的文献求助10
6秒前
Millie发布了新的文献求助10
7秒前
duxinyue应助sunzhiyu233采纳,获得10
7秒前
8秒前
喜悦夏之发布了新的文献求助10
9秒前
Chloe完成签到,获得积分10
9秒前
Kite完成签到,获得积分10
9秒前
JamesPei应助ZH的天方夜谭采纳,获得10
9秒前
晓峰完成签到,获得积分10
10秒前
xiao完成签到 ,获得积分10
10秒前
10秒前
12秒前
Ayu完成签到,获得积分10
12秒前
yale发布了新的文献求助10
12秒前
12秒前
Driscoll完成签到 ,获得积分10
14秒前
喜悦夏之完成签到,获得积分10
14秒前
14秒前
yatou5651发布了新的文献求助10
14秒前
16秒前
汉关发布了新的文献求助10
17秒前
¥¥¥¥¥¥¥¥完成签到 ,获得积分10
17秒前
XXF发布了新的文献求助10
17秒前
zrz发布了新的文献求助10
18秒前
18秒前
18秒前
田様应助BaekHyun采纳,获得10
20秒前
peng发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808