MICU: Image Super-resolution via Multi-level Information Compensation and U-net

计算机科学 人工智能 频道(广播) 卷积神经网络 模式识别(心理学) 特征(语言学) 特征提取 峰值信噪比 迭代重建 图像压缩 相似性(几何) 压缩传感 计算机视觉 人工神经网络 图像(数学) 图像处理 电信 哲学 语言学
作者
Yuantao Chen,Runlong Xia,Kai Yang,Ke Zou
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123111-123111 被引量:43
标识
DOI:10.1016/j.eswa.2023.123111
摘要

Recently, Deep Convolutional Neural Networks have demonstrated high-quality reconstruction in image super-resolution procedure. In this paper, we propose improved image super-resolution reconstruction via multi-level information compensation and U-Net network to address the problem that the image super-resolution reconstruction algorithm based on deep neural networks tends to lose feature information in the feature extraction process, resulting in the lack of texture and edge details in the reconstructed image. Firstly, we design the U-net like network for image super-resolution reconstruction, which performs multi-level feature extraction and channel compression for the input features through the down-channel branch. It fuses the compressed features and extracts the correlation features of different channels through the bottom module, and performs multi-level feature extraction and channel recovery for the compressed correlation features through the up-channel branch. The multi-level information compensation model is then designed to compensate for the information lost in the channel compression process and the information that is difficult to recover in the channel recovery process of U-net like network. The experimental results can show that the proposed algorithm achieves a significant improvement in Peak Signal-to-Noise Ratio and Structure Similarity Index and visual effect compared with the state-of-arts algorithms. The average experimental results of PSNR from proposed method had improved by 1.63 dB, 1.53 dB, 0.97 dB and 0.94 dB compared to SRCNN, HAT, DAT and CARN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛鲁完成签到,获得积分10
1秒前
1秒前
3秒前
4秒前
4秒前
5秒前
情怀应助shengChen采纳,获得10
5秒前
ocean关注了科研通微信公众号
6秒前
温大善人完成签到,获得积分10
6秒前
Amb1tionG发布了新的文献求助10
8秒前
8秒前
科研通AI2S应助辰星采纳,获得10
9秒前
ccm应助辰星采纳,获得10
9秒前
卷卷完成签到,获得积分20
9秒前
13秒前
13秒前
今后应助平常的可乐采纳,获得10
14秒前
李健应助从容的慕山采纳,获得10
14秒前
soar发布了新的文献求助10
15秒前
斯文香彤完成签到,获得积分10
16秒前
ilaragakki发布了新的文献求助10
17秒前
jyhk完成签到,获得积分10
17秒前
阿尔忒弥斯完成签到,获得积分10
17秒前
思源应助111采纳,获得10
17秒前
17秒前
田様应助fenghao采纳,获得10
18秒前
卷卷发布了新的文献求助10
18秒前
丘比特应助Mango采纳,获得10
18秒前
弥叶十厥发布了新的文献求助10
19秒前
19秒前
20秒前
cs发布了新的文献求助10
21秒前
21秒前
22秒前
是然宝啊完成签到,获得积分10
22秒前
万能图书馆应助liuxingyu采纳,获得10
23秒前
24秒前
典雅柚子发布了新的文献求助10
25秒前
linlin完成签到,获得积分10
26秒前
可爱的函函应助ilaragakki采纳,获得10
27秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792954
关于积分的说明 7804609
捐赠科研通 2449278
什么是DOI,文献DOI怎么找? 1303129
科研通“疑难数据库(出版商)”最低求助积分说明 626796
版权声明 601291