MICU: Image super-resolution via multi-level information compensation and U-net

计算机科学 人工智能 频道(广播) 卷积神经网络 模式识别(心理学) 特征(语言学) 特征提取 峰值信噪比 迭代重建 图像压缩 相似性(几何) 压缩传感 计算机视觉 人工神经网络 图像(数学) 图像处理 电信 哲学 语言学
作者
Yuantao Chen,Runlong Xia,Kai Yang,Ke Zou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123111-123111 被引量:90
标识
DOI:10.1016/j.eswa.2023.123111
摘要

Recently, Deep Convolutional Neural Networks have demonstrated high-quality reconstruction in image super-resolution procedure. In this paper, we propose improved image super-resolution reconstruction via multi-level information compensation and U-Net network to address the problem that the image super-resolution reconstruction algorithm based on deep neural networks tends to lose feature information in the feature extraction process, resulting in the lack of texture and edge details in the reconstructed image. Firstly, we design the U-net like network for image super-resolution reconstruction, which performs multi-level feature extraction and channel compression for the input features through the down-channel branch. It fuses the compressed features and extracts the correlation features of different channels through the bottom module, and performs multi-level feature extraction and channel recovery for the compressed correlation features through the up-channel branch. The multi-level information compensation model is then designed to compensate for the information lost in the channel compression process and the information that is difficult to recover in the channel recovery process of U-net like network. The experimental results can show that the proposed algorithm achieves a significant improvement in Peak Signal-to-Noise Ratio and Structure Similarity Index and visual effect compared with the state-of-arts algorithms. The average experimental results of PSNR from proposed method had improved by 1.63 dB, 1.53 dB, 0.97 dB and 0.94 dB compared to SRCNN, HAT, DAT and CARN, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃草莓发布了新的文献求助10
刚刚
香香香发布了新的文献求助10
1秒前
SMULJL发布了新的文献求助10
1秒前
Wguan完成签到,获得积分10
1秒前
misalia发布了新的文献求助10
1秒前
ramsey33发布了新的文献求助30
2秒前
LEO1253285120完成签到,获得积分10
3秒前
万能图书馆应助优秀笑槐采纳,获得10
3秒前
休眠火山发布了新的文献求助10
4秒前
5秒前
zh完成签到,获得积分10
6秒前
gaga完成签到,获得积分10
6秒前
ice7发布了新的文献求助20
8秒前
小马甲应助科研通管家采纳,获得10
9秒前
lone623应助科研通管家采纳,获得10
9秒前
Akim应助YY本Y采纳,获得10
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Owen应助科研通管家采纳,获得10
9秒前
9秒前
孙福禄应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
surfing发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
seaweed发布了新的文献求助10
11秒前
11秒前
无花果应助香香香采纳,获得10
12秒前
木至至发布了新的文献求助10
12秒前
745789发布了新的文献求助10
14秒前
哈利完成签到,获得积分10
14秒前
Moshiqi688发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助海带采纳,获得10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4011327
求助须知:如何正确求助?哪些是违规求助? 3551014
关于积分的说明 11307268
捐赠科研通 3285224
什么是DOI,文献DOI怎么找? 1811001
邀请新用户注册赠送积分活动 886685
科研通“疑难数据库(出版商)”最低求助积分说明 811597