图像分辨率
计算机科学
脑血流
成像体模
人工智能
时间分辨率
贝叶斯概率
模式识别(心理学)
分辨率(逻辑)
信号(编程语言)
各向同性
数据集
算法
计算机视觉
物理
光学
医学
心脏病学
程序设计语言
作者
Quinten Beirinckx,Piet Bladt,Merlijn C. E. van der Plas,Matthias J.P. van Osch,Ben Jeurissen,Arnold J. den Dekker,Jan Sijbers
出处
期刊:NeuroImage
[Elsevier]
日期:2024-01-01
卷期号:: 120506-120506
标识
DOI:10.1016/j.neuroimage.2024.120506
摘要
Arterial spin labeling (ASL) is a promising, non-invasive perfusion magnetic resonance imaging technique for quantifying cerebral blood flow (CBF). Unfortunately, ASL suffers from an inherently low signal-to-noise ratio (SNR) and spatial resolution, undermining its potential. Increasing spatial resolution without significantly sacrificing SNR or scan time represents a critical challenge towards routine clinical use. In this work, we propose a model-based super-resolution reconstruction (SRR) method with joint motion estimation that breaks the traditional SNR/resolution/scan-time trade-off. From a set of differently oriented 2D multi-slice pseudo-continuous ASL images with a low through-plane resolution, 3D-isotropic, high resolution, quantitative CBF maps are estimated using a Bayesian approach. Experiments on both synthetic whole brain phantom data, and on in vivo brain data, show that the proposed SRR Bayesian estimation framework outperforms state-of-the-art ASL quantification.
科研通智能强力驱动
Strongly Powered by AbleSci AI