WebDraw: A machine learning-driven tool for automatic website prototyping

计算机科学 图形用户界面 卷积神经网络 构造(python库) 文档对象模型 工件(错误) 源代码 Web应用程序 网页 人工智能 情报检索 程序设计语言 万维网
作者
Thisaranie Kaluarachchi,Manjusri Wickramasinghe
出处
期刊:Science of Computer Programming [Elsevier BV]
卷期号:233: 103056-103056
标识
DOI:10.1016/j.scico.2023.103056
摘要

To overcome the time-consuming nature and improve the cost-effectiveness of classical web development, being automatic is the most convenient alternative recent researchers suggest. Over the years, researchers have been working on inventing new approaches to generating websites automatically. In this paper, a novel approach is presented that automates the website generation process by incorporating web designer best practices and driving new prototype websites without the significant effort of redesigning websites. It takes high-fidelity mock-up design artifacts such as screen captures of real-world websites, and generates functional websites similar to the input websites, which involves three steps: GUI element detection, classification, and code generation. First, image processing techniques are applied to detect atomic web GUI elements from a mock-up design artifact of a real-world website. Second, a Convolutional Neural Network (CNN) is trained to classify the extracted web GUI elements into their domain-specific types such as headings, paragraphs, images, etc. A Graphical User Interface (GUI) is typically represented in code as a hierarchical tree, with nested GUI elements bundled together within one another to construct a tree. A recursive algorithm is proposed that constructs the appropriate Document Object Model (DOM) hierarchy for a website by recursively grouping classified web GUI elements within each other. Finally, the constructed DOM is converted to the accurate native code. The approach was implemented as a tool called WebDraw. Design science research evaluation shows that WebDraw achieves an average of 90% web GUI element classification and generates website prototypes that are visually similar to the target website design mock-up artifact while producing functional GUI code. Furthermore, interviews with industry professionals illustrate WebDraw's industry relevance for improving their industrial web design and development workflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
软土豆丝发布了新的文献求助10
1秒前
1秒前
1秒前
甜芋发布了新的文献求助30
2秒前
科研通AI5应助动听的靖琪采纳,获得50
2秒前
jjjj发布了新的文献求助10
2秒前
wanci应助科研废物采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
科研小王发布了新的文献求助10
3秒前
风中子轩发布了新的文献求助15
3秒前
3秒前
3秒前
zywoo完成签到,获得积分10
4秒前
4秒前
Jasper应助zyq采纳,获得10
4秒前
chemlixy完成签到 ,获得积分10
5秒前
jwx应助瑶瑶采纳,获得10
5秒前
UU发布了新的文献求助10
5秒前
迟大猫应助张张张采纳,获得10
6秒前
6秒前
he完成签到 ,获得积分10
6秒前
yao完成签到,获得积分10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
lancet完成签到,获得积分10
7秒前
田様应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
优美的风完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
李健应助科研通管家采纳,获得10
8秒前
干净又夏发布了新的文献求助10
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
Orange应助欢呼的墨镜采纳,获得10
8秒前
念justin发布了新的文献求助10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
Leon应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
Leon应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
Ava应助科研通管家采纳,获得10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663432
求助须知:如何正确求助?哪些是违规求助? 3223996
关于积分的说明 9754408
捐赠科研通 2933862
什么是DOI,文献DOI怎么找? 1606458
邀请新用户注册赠送积分活动 758497
科研通“疑难数据库(出版商)”最低求助积分说明 734836