Frustration Recognition Using Spatio Temporal Data: A Novel Dataset and GCN Model to Recognize In-Vehicle Frustration

挫折感 计算机科学 心理学 人工智能 机器学习 算法 社会心理学
作者
Esther Bosch,Raquel Le Houcq Corbí,Klas Ihme,Stefan Hörmann,Meike Jipp,David Käthner
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2864-2875 被引量:1
标识
DOI:10.1109/taffc.2022.3229263
摘要

Frustration is an unpleasant emotion prevalent in several target applications of affective computing, such as human-machine interaction, learning, (online) customer interaction, and gaming. One idea to redeem this issue is to recognize frustration to offer help or mitigation in real-time, e.g., by a personal assistant. However, the recognition of frustration is not limited to these applied contexts but can also inform emotion research in general. This paper presents a dataset of 43 participants who experienced frustration in driving-related situations in a simulator. The data set contains a continuous subjective label, hand-annotated face and body expressions, facial landmark coordinates of two cameras, and the participants’ age and sex information. In addition, a descriptive analysis and description of the data's characteristics are provided together with a Graph Convolution Network based model to recognize frustration. Allowing for a tolerance of 10%, the model could correctly identify frustration with a similarity of 79.4 % and a variance of 7.7 %. This work is valuable for researchers of the affective computing community because it provides realistic data with an in-depth description of its characteristics and a benchmark model for automated frustration recognition. Our FRUST-dataset is publicly available under: https://ts.dlr.de/data-lake/frust-dataset/dataset.zip .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
痴情的博超应助luyang采纳,获得20
2秒前
2秒前
4秒前
5秒前
江亭送行客完成签到,获得积分10
6秒前
糖果苏扬发布了新的文献求助10
6秒前
Somnolence咩完成签到,获得积分10
8秒前
8秒前
可爱因子发布了新的文献求助10
9秒前
12秒前
15秒前
xul279完成签到,获得积分10
15秒前
可爱因子完成签到,获得积分20
16秒前
大小米发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
独指蜗牛完成签到 ,获得积分10
21秒前
andyson666关注了科研通微信公众号
21秒前
hub完成签到,获得积分10
22秒前
22秒前
24秒前
科目三应助迷路的手机采纳,获得10
24秒前
25秒前
赘婿应助科研通管家采纳,获得10
25秒前
小马甲应助科研通管家采纳,获得10
25秒前
酷波er应助科研通管家采纳,获得10
25秒前
完美世界应助科研通管家采纳,获得20
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
FashionBoy应助科研通管家采纳,获得10
25秒前
ch发布了新的文献求助10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
山花浪漫应助科研通管家采纳,获得10
26秒前
26秒前
yaya发布了新的文献求助10
26秒前
幻心发布了新的文献求助10
28秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782