Frustration Recognition Using Spatio Temporal Data: A Novel Dataset and GCN Model to Recognize In-Vehicle Frustration

挫折感 计算机科学 心理学 人工智能 机器学习 算法 社会心理学
作者
Esther Bosch,Raquel Le Houcq Corbí,Klas Ihme,Stefan Hörmann,Meike Jipp,David Käthner
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2864-2875 被引量:1
标识
DOI:10.1109/taffc.2022.3229263
摘要

Frustration is an unpleasant emotion prevalent in several target applications of affective computing, such as human-machine interaction, learning, (online) customer interaction, and gaming. One idea to redeem this issue is to recognize frustration to offer help or mitigation in real-time, e.g., by a personal assistant. However, the recognition of frustration is not limited to these applied contexts but can also inform emotion research in general. This paper presents a dataset of 43 participants who experienced frustration in driving-related situations in a simulator. The data set contains a continuous subjective label, hand-annotated face and body expressions, facial landmark coordinates of two cameras, and the participants’ age and sex information. In addition, a descriptive analysis and description of the data's characteristics are provided together with a Graph Convolution Network based model to recognize frustration. Allowing for a tolerance of 10%, the model could correctly identify frustration with a similarity of 79.4 % and a variance of 7.7 %. This work is valuable for researchers of the affective computing community because it provides realistic data with an in-depth description of its characteristics and a benchmark model for automated frustration recognition. Our FRUST-dataset is publicly available under: https://ts.dlr.de/data-lake/frust-dataset/dataset.zip .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助bismarck7采纳,获得10
1秒前
顾矜应助柴火妞采纳,获得10
1秒前
莹yy发布了新的文献求助10
2秒前
无限长颈鹿关注了科研通微信公众号
3秒前
叁壹捌发布了新的文献求助10
4秒前
4秒前
云阔发布了新的文献求助10
5秒前
5秒前
wawaoooo关注了科研通微信公众号
8秒前
8秒前
9秒前
欢呼诗柳发布了新的文献求助10
9秒前
星辰大海应助坦率道之采纳,获得10
9秒前
10秒前
叁壹捌完成签到,获得积分10
11秒前
毛豆应助sholai采纳,获得10
11秒前
12秒前
12秒前
小萌子发布了新的文献求助10
13秒前
13秒前
Owen应助李政浩采纳,获得10
13秒前
15秒前
llllh发布了新的文献求助200
15秒前
小蘑菇应助小叶采纳,获得10
15秒前
16秒前
16秒前
artemis发布了新的文献求助10
17秒前
huerla完成签到,获得积分10
18秒前
欢呼诗柳完成签到,获得积分10
18秒前
19秒前
19秒前
乐观的丹琴完成签到,获得积分10
20秒前
酷波er应助LHS采纳,获得10
20秒前
思源应助朴素海亦采纳,获得10
21秒前
嘉幸的发布了新的文献求助10
21秒前
21秒前
22秒前
Liang发布了新的文献求助10
22秒前
斯文败类应助一二采纳,获得10
22秒前
23秒前
高分求助中
Востребованный временем 2500
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422411
求助须知:如何正确求助?哪些是违规求助? 3022716
关于积分的说明 8902311
捐赠科研通 2710160
什么是DOI,文献DOI怎么找? 1486341
科研通“疑难数据库(出版商)”最低求助积分说明 687027
邀请新用户注册赠送积分活动 682261