Frustration Recognition Using Spatio Temporal Data: A Novel Dataset and GCN Model to Recognize In-Vehicle Frustration

挫折感 计算机科学 心理学 人工智能 机器学习 算法 社会心理学
作者
Esther Bosch,Raquel Le Houcq Corbí,Klas Ihme,Stefan Hörmann,Meike Jipp,David Käthner
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (4): 2864-2875 被引量:1
标识
DOI:10.1109/taffc.2022.3229263
摘要

Frustration is an unpleasant emotion prevalent in several target applications of affective computing, such as human-machine interaction, learning, (online) customer interaction, and gaming. One idea to redeem this issue is to recognize frustration to offer help or mitigation in real-time, e.g., by a personal assistant. However, the recognition of frustration is not limited to these applied contexts but can also inform emotion research in general. This paper presents a dataset of 43 participants who experienced frustration in driving-related situations in a simulator. The data set contains a continuous subjective label, hand-annotated face and body expressions, facial landmark coordinates of two cameras, and the participants’ age and sex information. In addition, a descriptive analysis and description of the data's characteristics are provided together with a Graph Convolution Network based model to recognize frustration. Allowing for a tolerance of 10%, the model could correctly identify frustration with a similarity of 79.4 % and a variance of 7.7 %. This work is valuable for researchers of the affective computing community because it provides realistic data with an in-depth description of its characteristics and a benchmark model for automated frustration recognition. Our FRUST-dataset is publicly available under: https://ts.dlr.de/data-lake/frust-dataset/dataset.zip .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
I北草蜥发布了新的文献求助10
1秒前
hqh发布了新的文献求助10
2秒前
852应助安静的以山采纳,获得10
3秒前
Rita发布了新的文献求助30
4秒前
6秒前
Macong_44713完成签到,获得积分10
6秒前
bear应助蓝色采纳,获得100
6秒前
Criminology34应助蓝色采纳,获得10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
小松应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
小松应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
小红书求接接接接一篇完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
小黄人应助科研通管家采纳,获得10
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5820503
求助须知:如何正确求助?哪些是违规求助? 5967298
关于积分的说明 15555116
捐赠科研通 4942274
什么是DOI,文献DOI怎么找? 2661925
邀请新用户注册赠送积分活动 1608173
关于科研通互助平台的介绍 1563089