亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 社会学 航空航天工程 人口学 生物 计算机安全 生态学
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:286: 111402-111402 被引量:28
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Suraim完成签到,获得积分10
47秒前
量子星尘发布了新的文献求助10
1分钟前
雨竹完成签到,获得积分10
1分钟前
情怀应助碧蓝的万宝路采纳,获得10
2分钟前
李志全完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
Nichols完成签到,获得积分10
3分钟前
星际舟完成签到,获得积分10
4分钟前
Ashao完成签到 ,获得积分10
4分钟前
Otter驳回了华仔应助
4分钟前
英俊的铭应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
5分钟前
Otter发布了新的文献求助200
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
北国雪未消完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
芋泥发布了新的文献求助10
7分钟前
Lucas应助rpe采纳,获得10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
8分钟前
rpe发布了新的文献求助10
8分钟前
眯眯眼的雪莲完成签到 ,获得积分10
8分钟前
勤恳冰淇淋完成签到 ,获得积分10
8分钟前
8分钟前
jinyue发布了新的文献求助10
8分钟前
15832369693应助rpe采纳,获得10
9分钟前
科研通AI5应助nsjsiama采纳,获得10
9分钟前
量子星尘发布了新的文献求助10
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612045
求助须知:如何正确求助?哪些是违规求助? 4017363
关于积分的说明 12436266
捐赠科研通 3699400
什么是DOI,文献DOI怎么找? 2040114
邀请新用户注册赠送积分活动 1072929
科研通“疑难数据库(出版商)”最低求助积分说明 956610