Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 生态学 人口学 计算机安全 社会学 生物 航空航天工程
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111402-111402 被引量:31
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanshou完成签到,获得积分10
1秒前
1秒前
锦慜发布了新的文献求助10
2秒前
2秒前
杨仔完成签到,获得积分10
2秒前
淡如水发布了新的文献求助10
3秒前
will发布了新的文献求助10
3秒前
赘婿应助冷傲迎梦采纳,获得10
3秒前
4秒前
YY发布了新的文献求助10
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
香蕉觅云应助琳666采纳,获得10
6秒前
zl12应助幽默尔蓝采纳,获得10
6秒前
zwy发布了新的文献求助10
6秒前
郭奕沛完成签到,获得积分10
6秒前
科研通AI2S应助震震采纳,获得10
8秒前
xs发布了新的文献求助10
9秒前
9秒前
芝士酱完成签到,获得积分10
10秒前
张11发布了新的文献求助10
10秒前
11秒前
邓佳鑫Alan应助ZZQ采纳,获得10
12秒前
13秒前
ZhouXB完成签到,获得积分10
14秒前
大宝剑2号完成签到 ,获得积分10
15秒前
李健应助锅锅采纳,获得10
15秒前
16秒前
16秒前
16秒前
小猪发布了新的文献求助10
16秒前
呆萌的早晨完成签到,获得积分10
16秒前
科研通AI6应助超级佳倍采纳,获得10
17秒前
19秒前
丘比特应助文官采纳,获得10
19秒前
小小应助will采纳,获得10
19秒前
希望天下0贩的0应助ss采纳,获得10
19秒前
Dr_Zhang完成签到,获得积分10
20秒前
含蓄的海完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646