Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 生态学 人口学 计算机安全 社会学 生物 航空航天工程
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111402-111402 被引量:7
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
grisco完成签到,获得积分10
1秒前
1秒前
jiang完成签到,获得积分10
3秒前
人生何处不青山完成签到 ,获得积分10
3秒前
3秒前
流星吖完成签到,获得积分10
3秒前
共享精神应助化工兔采纳,获得10
4秒前
4秒前
xuhang发布了新的文献求助10
5秒前
lal发布了新的文献求助10
8秒前
打工人发布了新的文献求助10
9秒前
ZZzz完成签到,获得积分10
9秒前
威武的捕完成签到,获得积分10
10秒前
pluto完成签到,获得积分0
13秒前
搜集达人应助打工人采纳,获得10
13秒前
14秒前
lily完成签到,获得积分20
15秒前
隐形曼青应助小太阳采纳,获得10
15秒前
daisy完成签到,获得积分10
17秒前
司纤户羽发布了新的文献求助10
18秒前
swy发布了新的文献求助10
19秒前
FashionBoy应助范妮妮采纳,获得30
19秒前
笑哈哈发布了新的文献求助10
20秒前
20秒前
眼睛大含桃完成签到,获得积分10
20秒前
年轻的藏今完成签到,获得积分20
21秒前
heyan完成签到,获得积分10
21秒前
JamesPei应助科研通管家采纳,获得10
22秒前
科目三应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Lucas应助科研通管家采纳,获得10
22秒前
烟花应助科研通管家采纳,获得20
22秒前
fgd应助科研通管家采纳,获得10
22秒前
Jasper应助科研通管家采纳,获得10
22秒前
Jarvis应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得10
23秒前
深情安青应助科研通管家采纳,获得10
23秒前
JamesPei应助科研通管家采纳,获得10
23秒前
Cloud应助科研通管家采纳,获得20
23秒前
高分求助中
中国国际图书贸易总公司40周年纪念文集: 史论集 2500
Sustainability in Tides Chemistry 2000
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
How to mix methods: A guide to sequential, convergent, and experimental research designs 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3111880
求助须知:如何正确求助?哪些是违规求助? 2761961
关于积分的说明 7668680
捐赠科研通 2417064
什么是DOI,文献DOI怎么找? 1282960
科研通“疑难数据库(出版商)”最低求助积分说明 619220
版权声明 599524