清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 生态学 人口学 计算机安全 社会学 生物 航空航天工程
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111402-111402 被引量:31
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助wciphone采纳,获得10
11秒前
21秒前
33秒前
Arctic完成签到 ,获得积分10
42秒前
FMHChan完成签到,获得积分10
44秒前
量子星尘发布了新的文献求助10
1分钟前
婉莹完成签到 ,获得积分0
1分钟前
大饼完成签到 ,获得积分10
1分钟前
1分钟前
wciphone发布了新的文献求助10
1分钟前
xuexi完成签到 ,获得积分10
1分钟前
远方完成签到 ,获得积分10
1分钟前
tianshanfeihe完成签到 ,获得积分10
1分钟前
BowieHuang应助Omni采纳,获得20
1分钟前
1分钟前
年轻的凝云完成签到 ,获得积分10
2分钟前
糟糕的翅膀完成签到,获得积分10
2分钟前
科研通AI6应助wciphone采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
zzh完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
学生信的大叔完成签到,获得积分10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
白华苍松发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
5分钟前
silence完成签到 ,获得积分10
5分钟前
咯咯咯完成签到 ,获得积分10
6分钟前
ccl发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534469
求助须知:如何正确求助?哪些是违规求助? 4622450
关于积分的说明 14582630
捐赠科研通 4562656
什么是DOI,文献DOI怎么找? 2500278
邀请新用户注册赠送积分活动 1479820
关于科研通互助平台的介绍 1451022