Guided learning strategy: A novel update mechanism for metaheuristic algorithms design and improvement

计算机科学 算法 适应性 局部最优 航程(航空) 元启发式 利用 数学优化 进化算法 人口 启发式 机器学习 人工智能 数学 工程类 社会学 航空航天工程 人口学 生物 计算机安全 生态学
作者
Heming Jia,Chenghao Lu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:286: 111402-111402 被引量:7
标识
DOI:10.1016/j.knosys.2024.111402
摘要

Meta-heuristic algorithms (MH) are naturally inspired global optimization algorithms. They are often relatively simple and can solve problems in a short period of time, with certain benefits. However, as the problem becomes more complex, the solution that the algorithm can obtain is often not the optimal solution to the problem, which limits its application scenarios. Therefore, improving the performance and solving accuracy of existing algorithms is crucial for expanding their application ability. In traditional optimization algorithms, there are often two concepts, namely exploration and exploitation. Exploration refers to a wide range of discrete search, used to avoid falling into local optima, and exploitation refers to a small range of focused exploration, used to improve algorithm accuracy. How to balance exploration and exploitation is the key to enhancing algorithm performance and problem adaptability. This paper proposes a brand new strategy named Guided Learning Strategy (GLS) to solve above problem. GLS obtains the dispersion degree of the population by calculating the standard deviation of the historical locations of individuals in recent generations, and infers what guidance the algorithm currently needs. When the algorithm is biased towards exploration, it will guide the algorithm to exploit. Otherwise, it will guide the algorithm to explore. It is precisely because this strategy can identify the current needs of the algorithm and provide assistance that it can improve the performance of most algorithms. This article improves three types of algorithms based on evolution (LSHADE_SPACMA), Stochastic Fractal Search (SFS), and Marine Predators Algorithm (MPA) with better performance, and tests their performance on 57 constrained engineering problems and CEC2020. The effectiveness of this strategy has been confirmed and proved for optimization problem. The source codes of the proposed GLS (GLS_MPA) can be accessed by https://github.com/luchenghao2022/Guided-Learning-Strategy
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
儒雅的秋珊完成签到,获得积分10
1秒前
善学以致用应助BWZ采纳,获得10
1秒前
Meiyu发布了新的文献求助10
1秒前
_hhhjhhh完成签到,获得积分10
2秒前
91发布了新的文献求助10
2秒前
Li发布了新的文献求助10
3秒前
3秒前
hn发布了新的文献求助20
3秒前
zhou发布了新的文献求助10
3秒前
lyejxusgh完成签到,获得积分10
4秒前
赖道之发布了新的文献求助10
4秒前
张鱼小丸子完成签到,获得积分10
4秒前
无花果应助下课了吧采纳,获得10
4秒前
加肥猫1992完成签到,获得积分10
4秒前
zhogwe完成签到,获得积分10
5秒前
Zachary完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
坦率的无春完成签到 ,获得积分10
6秒前
6秒前
胤宸发布了新的文献求助10
6秒前
7秒前
ZY发布了新的文献求助20
7秒前
Wu完成签到,获得积分10
8秒前
8秒前
8秒前
烟花不能太放肆完成签到,获得积分20
8秒前
183完成签到,获得积分10
9秒前
9秒前
123lura发布了新的文献求助10
9秒前
宫立辉完成签到,获得积分10
9秒前
curtainai完成签到,获得积分10
10秒前
91完成签到,获得积分10
10秒前
无情的冰香完成签到 ,获得积分10
10秒前
xh完成签到,获得积分20
10秒前
迟大猫应助周舟采纳,获得10
10秒前
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762