ANED-Net: Adaptive Noise Estimation and Despeckling Network for SAR Image

计算机科学 降噪 人工智能 散斑噪声 平滑的 合成孔径雷达 噪音(视频) 噪声测量 模式识别(心理学) 高斯噪声 计算机视觉 斑点图案 图像(数学)
作者
X. Wang,Yanxia Wu,Changting Shi,Ye Yuan,Xue Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 4036-4051
标识
DOI:10.1109/jstars.2024.3355220
摘要

Synthetic aperture radar (SAR) images are often affected by a type of multiplicative noise known as "speckle" due to their active imaging characteristics.This property complicates the processing and interpretation of SAR images.While deep learning techniques have demonstrated success in despeckling many models are tailored to specific noise levels.This specificity can limit a model's ability to generalize to real SAR images with varying noise levels, potentially leading to over-smoothing or over-focusing on specific details.To address these challenges, we present the Adaptive Noise Estimation and Despeckling Network (ANED-Net).This network consists of a noise-level estimation phase and a noise-level-guided non-blind denoising phase.During the non-blind denoising phase, we develop a Noise Feature-Guided Denoising Network (NFGDN).This network integrates a hierarchical encoder-decoder denoising module based on the Transformer block (T-unet) and a Denoising Enhancement Control (DEC) block.Together, they skillfully capture both local and global dependencies inherent in SAR images, facilitating effective noise removal.Furthermore, we also introduce a Deepattention mechanism to counteract the attentional collapse observed when the Transformer is extended in depth, enhancing the network's feature extraction capability and strengthening the model's denoising performance.Extensive tests on synthetic and real images show that ANED-Net is robust to different noise scenarios.It effectively mitigates speckle noise even at unspecified levels, and outperforms many established methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
能干的邹发布了新的文献求助10
1秒前
2秒前
何意味完成签到 ,获得积分10
3秒前
水木年华发布了新的文献求助10
3秒前
5秒前
5秒前
彭于晏应助欣喜的尔曼采纳,获得10
5秒前
6秒前
木又权完成签到,获得积分10
7秒前
能干的邹完成签到,获得积分10
7秒前
善学以致用应助艾原采纳,获得10
7秒前
科研通AI6应助任成艳采纳,获得10
7秒前
岳拔萃发布了新的文献求助10
8秒前
茉莉完成签到,获得积分10
8秒前
8秒前
白雪阁发布了新的文献求助10
9秒前
9秒前
Kyrie完成签到,获得积分10
9秒前
卞珂完成签到,获得积分10
10秒前
holiday发布了新的文献求助20
10秒前
不想做实验完成签到,获得积分10
10秒前
10秒前
科研通AI6应助笑点低的悒采纳,获得10
11秒前
11秒前
豆沙包完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
张兰兰发布了新的文献求助10
13秒前
Min完成签到,获得积分10
14秒前
14秒前
思哲范发布了新的文献求助10
15秒前
Yh_L发布了新的文献求助10
15秒前
时光发布了新的文献求助10
15秒前
英俊的铭应助NCNST-shi采纳,获得10
16秒前
田小胖完成签到,获得积分10
16秒前
16秒前
Meteor636完成签到 ,获得积分10
17秒前
接两块钱发布了新的文献求助10
17秒前
123456qqqq完成签到,获得积分10
17秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588355
求助须知:如何正确求助?哪些是违规求助? 4671484
关于积分的说明 14787308
捐赠科研通 4625063
什么是DOI,文献DOI怎么找? 2531787
邀请新用户注册赠送积分活动 1500349
关于科研通互助平台的介绍 1468300