ANED-Net: Adaptive Noise Estimation and Despeckling Network for SAR Image

计算机科学 降噪 人工智能 散斑噪声 平滑的 合成孔径雷达 噪音(视频) 噪声测量 模式识别(心理学) 高斯噪声 计算机视觉 斑点图案 图像(数学)
作者
X. Wang,Yanxia Wu,Changting Shi,Ye Yuan,Xue Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 4036-4051
标识
DOI:10.1109/jstars.2024.3355220
摘要

Synthetic aperture radar (SAR) images are often affected by a type of multiplicative noise known as "speckle" due to their active imaging characteristics.This property complicates the processing and interpretation of SAR images.While deep learning techniques have demonstrated success in despeckling many models are tailored to specific noise levels.This specificity can limit a model's ability to generalize to real SAR images with varying noise levels, potentially leading to over-smoothing or over-focusing on specific details.To address these challenges, we present the Adaptive Noise Estimation and Despeckling Network (ANED-Net).This network consists of a noise-level estimation phase and a noise-level-guided non-blind denoising phase.During the non-blind denoising phase, we develop a Noise Feature-Guided Denoising Network (NFGDN).This network integrates a hierarchical encoder-decoder denoising module based on the Transformer block (T-unet) and a Denoising Enhancement Control (DEC) block.Together, they skillfully capture both local and global dependencies inherent in SAR images, facilitating effective noise removal.Furthermore, we also introduce a Deepattention mechanism to counteract the attentional collapse observed when the Transformer is extended in depth, enhancing the network's feature extraction capability and strengthening the model's denoising performance.Extensive tests on synthetic and real images show that ANED-Net is robust to different noise scenarios.It effectively mitigates speckle noise even at unspecified levels, and outperforms many established methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
是榤啊完成签到 ,获得积分10
1秒前
1秒前
沉静飞雪发布了新的文献求助10
1秒前
2秒前
Rain完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
亮仔发布了新的文献求助10
4秒前
www完成签到,获得积分10
5秒前
Rubyii发布了新的文献求助10
5秒前
zzzzzzz完成签到 ,获得积分10
6秒前
6秒前
6秒前
PORCO完成签到,获得积分10
7秒前
浮游应助Zac采纳,获得10
8秒前
9秒前
英姑应助西子采纳,获得10
10秒前
10秒前
yaoyao发布了新的文献求助10
11秒前
11秒前
yijibaoli完成签到 ,获得积分10
12秒前
12秒前
及禾发布了新的文献求助10
12秒前
研友_n2Qv2L发布了新的文献求助10
12秒前
13秒前
7788完成签到,获得积分10
14秒前
FyD关闭了FyD文献求助
15秒前
15秒前
wch发布了新的文献求助10
15秒前
16秒前
瞿绝悟发布了新的文献求助10
16秒前
沉静飞雪完成签到,获得积分10
16秒前
16秒前
聂珩发布了新的文献求助10
16秒前
16秒前
寒冷的书白完成签到,获得积分20
17秒前
橙子发布了新的文献求助10
18秒前
Lucas应助李里哩采纳,获得10
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082