亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ANED-Net: Adaptive Noise Estimation and Despeckling Network for SAR Image

计算机科学 降噪 人工智能 散斑噪声 平滑的 合成孔径雷达 噪音(视频) 噪声测量 模式识别(心理学) 高斯噪声 计算机视觉 斑点图案 图像(数学)
作者
X. Wang,Yanxia Wu,Changting Shi,Ye Yuan,Xue Zhang
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 4036-4051
标识
DOI:10.1109/jstars.2024.3355220
摘要

Synthetic aperture radar (SAR) images are often affected by a type of multiplicative noise known as "speckle" due to their active imaging characteristics.This property complicates the processing and interpretation of SAR images.While deep learning techniques have demonstrated success in despeckling many models are tailored to specific noise levels.This specificity can limit a model's ability to generalize to real SAR images with varying noise levels, potentially leading to over-smoothing or over-focusing on specific details.To address these challenges, we present the Adaptive Noise Estimation and Despeckling Network (ANED-Net).This network consists of a noise-level estimation phase and a noise-level-guided non-blind denoising phase.During the non-blind denoising phase, we develop a Noise Feature-Guided Denoising Network (NFGDN).This network integrates a hierarchical encoder-decoder denoising module based on the Transformer block (T-unet) and a Denoising Enhancement Control (DEC) block.Together, they skillfully capture both local and global dependencies inherent in SAR images, facilitating effective noise removal.Furthermore, we also introduce a Deepattention mechanism to counteract the attentional collapse observed when the Transformer is extended in depth, enhancing the network's feature extraction capability and strengthening the model's denoising performance.Extensive tests on synthetic and real images show that ANED-Net is robust to different noise scenarios.It effectively mitigates speckle noise even at unspecified levels, and outperforms many established methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温暖砖头发布了新的文献求助10
刚刚
顺利的水瑶完成签到 ,获得积分10
6秒前
14秒前
洪武发布了新的文献求助10
20秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
赘婿应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Cookiee完成签到 ,获得积分10
27秒前
洪武完成签到,获得积分10
28秒前
与一完成签到,获得积分10
32秒前
39秒前
56秒前
56秒前
LIFE2020完成签到 ,获得积分10
57秒前
温暖砖头完成签到,获得积分10
1分钟前
温暖砖头发布了新的文献求助10
1分钟前
人双山几文完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
西湖醋鱼发布了新的文献求助10
2分钟前
2分钟前
脑洞疼应助梅倪采纳,获得10
2分钟前
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
再现发布了新的文献求助10
2分钟前
2分钟前
Chen完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
温暖砖头发布了新的文献求助10
2分钟前
李志全完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534215
求助须知:如何正确求助?哪些是违规求助? 4622286
关于积分的说明 14582372
捐赠科研通 4562479
什么是DOI,文献DOI怎么找? 2500187
邀请新用户注册赠送积分活动 1479735
关于科研通互助平台的介绍 1450877