The influence of nanostructure and electrolyte concentration on the performance of nickel sulfide (Ni3S2) catalyst for electrochemical overall water splitting

分解水 电解质 过电位 硫化镍 析氧 电化学 催化作用 纳米棒 化学工程 材料科学 无机化学 纳米结构 硫化物 化学 电极 纳米技术 冶金 有机化学 物理化学 光催化 工程类
作者
Shaista Zubaid,Junaid Khan,Tauqir A. Sherazi
出处
期刊:Journal of Colloid and Interface Science [Elsevier]
卷期号:660: 502-512
标识
DOI:10.1016/j.jcis.2024.01.118
摘要

Developing nonprecious nanostructured electrocatalysts, exhibiting high catalytic activity in combination with excellent stability, has an enormous potential to replace noble-metal-based catalysts for Hydrogen production through electrochemical water splitting. In this study, a facile method is used for the synthesis of three different hierarchical nanostructures of nickel sulfide (Ni3S2) including nanosheets, nanorods, and multiconnected nanorods that are directly grown on 3D nickel foam (NF). These nanostructured electrocatalysts are evaluated for electrochemical water splitting in alkaline media using four different concentrations to understand the effect of nanostructure and ion concentration on the efficiency. Among different combinations of structure and electrolyte concentration, the Ni3S2 in the form of nanosheets exhibited the best electrocatalytic performance for hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER) in 3.0 M alkaline solution. The hierarchical Ni3S2 nanosheets exhibited a high electrochemically active surface area, which facilitated the charge transport phenomenon along the electrode–electrolyte interface in a higher electrolyte concentration that improved the reaction kinetics so as overall water splitting. The developed Ni3S2 nanosheets required an overpotential of 110 mV (@10 mA cm−2) and 211 mV (@100 mA cm−2) for HER and OER, respectively in 3.0 M electrolyte concentration. This work provides insight into how the materials’ nanostructures and electrolyte concentration could be utilized to improve the electrocatalytic performance for an overall water-splitting process, and the concept could be applied for material designing and conditions optimization for other catalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
1秒前
书桃发布了新的文献求助10
1秒前
科研通AI2S应助Cheryl采纳,获得10
2秒前
思源应助姚芭蕉采纳,获得20
3秒前
4秒前
4秒前
6秒前
田様应助maomao采纳,获得30
6秒前
Forever发布了新的文献求助10
8秒前
恢复出厂设置完成签到,获得积分10
8秒前
充电宝应助Luna采纳,获得10
8秒前
无奈易绿完成签到,获得积分10
8秒前
kmoyy完成签到,获得积分10
9秒前
小蘑菇应助流星采纳,获得10
10秒前
ccm发布了新的文献求助10
11秒前
liuhll完成签到,获得积分20
11秒前
pluto应助独特苡采纳,获得30
12秒前
赘婿应助科研小崽采纳,获得10
13秒前
lemon5659068发布了新的文献求助10
14秒前
zy完成签到,获得积分10
14秒前
15秒前
16秒前
希希完成签到 ,获得积分10
16秒前
17秒前
细腻无春完成签到,获得积分20
17秒前
Aloha发布了新的文献求助10
18秒前
18秒前
务实可愁发布了新的文献求助10
18秒前
20秒前
21秒前
Tan3837发布了新的文献求助10
21秒前
流星发布了新的文献求助10
23秒前
24秒前
盛夏如花发布了新的文献求助10
25秒前
Jcm完成签到,获得积分10
25秒前
务实可愁完成签到,获得积分20
27秒前
CipherSage应助舒适的平蓝采纳,获得10
27秒前
phil发布了新的文献求助10
28秒前
情怀应助庄小因采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455209
求助须知:如何正确求助?哪些是违规求助? 3050548
关于积分的说明 9021471
捐赠科研通 2739114
什么是DOI,文献DOI怎么找? 1502452
科研通“疑难数据库(出版商)”最低求助积分说明 694529
邀请新用户注册赠送积分活动 693302