亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual-View Fusion Network for Automatic Spinal Keypoint Detection in Biplane X-ray Images

子网 人工智能 计算机视觉 计算机科学 模式识别(心理学) 计算机安全
作者
Dandan Zhou,Lijun Guo,Rong Zhang,Xiuchao He,Qiang Wang,Jianhua Wang
标识
DOI:10.1109/bibm58861.2023.10385670
摘要

Accurate keypoint detection in medical images of the spine is critical for the assessment, diagnosis, treatment planning, and clinical investigation of spinal deformities. However, due to severe occlusions of spinal structures in lateral X-ray images, accurate keypoint detection can be hardly achieved in lateral X-ray images based on single-view information. Thus, methods based on both the anterior-posterior (AP) and lateral (LAT) X-ray image views have been proposed to alleviate occlusion problems and achieve better keypoint detection performance. Although some progress has been made with these dual-view methods, they do not effectively exploit a priori knowledge of the spine and hence cannot adequately account for the structural correlation of the vertebrae across views. In this paper, a new dual-view fusion network (DVFNet) framework is proposed for keypoint detection in spinal X-ray images. This framework obtains structural correlations between AP and LAT views of the spine based on a priori spine knowledge represented by high-level semantic features. Meanwhile, the proposed framework combines local and global features extracted respectively by a local subnetwork and a global subnetwork. On the one hand, the local subnetwork is constructed as an enhanced codec structure based on both the AP and LAT views. This subnetwork is trained to output local features that contain both joint semantic features of the two views and independent fine-grained features of each individual view. This scheme leads to accurate keypoint estimation locally. On the other hand, the global subnetwork utilizes a self-attention mechanism to extract view-specific global features based on either the AP view or the LAT view in order to eliminate ambiguity, and reduce confusion on keypoint locations. Further, we propose a weighted feature fusion (WFF) module for adaptive fusion of the local and global features. We evaluated the DVFNet model on a private dataset and found that our proposed method achieves more accurate spinal keypoint detection compared to other state-of-the-art methods, and thus our method can provide reliable assistance to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
正在努力的学术小垃圾完成签到 ,获得积分10
8秒前
LiuTong发布了新的文献求助10
9秒前
科研通AI5应助彬彬采纳,获得10
24秒前
一八四完成签到,获得积分10
27秒前
Jasper应助nico采纳,获得10
34秒前
NOVA完成签到,获得积分10
37秒前
小丸子完成签到,获得积分10
46秒前
Tufail完成签到,获得积分10
1分钟前
1分钟前
杨雁歌发布了新的文献求助10
1分钟前
1分钟前
彬彬发布了新的文献求助10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1分钟前
orixero应助FF采纳,获得10
1分钟前
彬彬完成签到,获得积分10
1分钟前
佩琪完成签到 ,获得积分10
2分钟前
Yuki完成签到 ,获得积分10
2分钟前
LiuTong完成签到,获得积分20
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
想听水星记完成签到,获得积分10
2分钟前
Hello应助LiuTong采纳,获得10
2分钟前
huanghuang发布了新的文献求助30
2分钟前
334niubi666完成签到 ,获得积分10
2分钟前
老仙翁完成签到,获得积分10
2分钟前
加缪完成签到,获得积分0
3分钟前
AA完成签到 ,获得积分10
3分钟前
杨雁歌完成签到,获得积分10
3分钟前
3分钟前
周怀宇发布了新的文献求助10
3分钟前
合一海盗完成签到,获得积分10
3分钟前
完美世界应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
3分钟前
周怀宇完成签到,获得积分20
3分钟前
量子星尘发布了新的文献求助50
3分钟前
读研霹雳完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5007138
求助须知:如何正确求助?哪些是违规求助? 4250322
关于积分的说明 13243019
捐赠科研通 4050617
什么是DOI,文献DOI怎么找? 2215872
邀请新用户注册赠送积分活动 1225696
关于科研通互助平台的介绍 1146659