A Dual-View Fusion Network for Automatic Spinal Keypoint Detection in Biplane X-ray Images

子网 人工智能 计算机视觉 计算机科学 模式识别(心理学) 计算机安全
作者
Dandan Zhou,Lijun Guo,Rong Zhang,Xiuchao He,Qiang Wang,Jianhua Wang
标识
DOI:10.1109/bibm58861.2023.10385670
摘要

Accurate keypoint detection in medical images of the spine is critical for the assessment, diagnosis, treatment planning, and clinical investigation of spinal deformities. However, due to severe occlusions of spinal structures in lateral X-ray images, accurate keypoint detection can be hardly achieved in lateral X-ray images based on single-view information. Thus, methods based on both the anterior-posterior (AP) and lateral (LAT) X-ray image views have been proposed to alleviate occlusion problems and achieve better keypoint detection performance. Although some progress has been made with these dual-view methods, they do not effectively exploit a priori knowledge of the spine and hence cannot adequately account for the structural correlation of the vertebrae across views. In this paper, a new dual-view fusion network (DVFNet) framework is proposed for keypoint detection in spinal X-ray images. This framework obtains structural correlations between AP and LAT views of the spine based on a priori spine knowledge represented by high-level semantic features. Meanwhile, the proposed framework combines local and global features extracted respectively by a local subnetwork and a global subnetwork. On the one hand, the local subnetwork is constructed as an enhanced codec structure based on both the AP and LAT views. This subnetwork is trained to output local features that contain both joint semantic features of the two views and independent fine-grained features of each individual view. This scheme leads to accurate keypoint estimation locally. On the other hand, the global subnetwork utilizes a self-attention mechanism to extract view-specific global features based on either the AP view or the LAT view in order to eliminate ambiguity, and reduce confusion on keypoint locations. Further, we propose a weighted feature fusion (WFF) module for adaptive fusion of the local and global features. We evaluated the DVFNet model on a private dataset and found that our proposed method achieves more accurate spinal keypoint detection compared to other state-of-the-art methods, and thus our method can provide reliable assistance to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yryr完成签到 ,获得积分10
刚刚
保持理智完成签到,获得积分10
1秒前
hhh发布了新的文献求助10
1秒前
hxl123发布了新的文献求助10
5秒前
7秒前
如7而至发布了新的文献求助10
8秒前
Kenina完成签到,获得积分10
9秒前
11秒前
狗子发布了新的文献求助10
11秒前
wan发布了新的文献求助10
12秒前
foreverwhy发布了新的文献求助10
12秒前
btsforever完成签到 ,获得积分10
13秒前
蜗牛发布了新的文献求助10
16秒前
wobisheng完成签到 ,获得积分10
17秒前
17秒前
17秒前
如7而至完成签到,获得积分10
18秒前
20秒前
wobisheng发布了新的文献求助10
22秒前
充电宝应助huanhuan采纳,获得10
25秒前
zmin发布了新的文献求助10
25秒前
曾经嫣然发布了新的文献求助10
26秒前
明111完成签到 ,获得积分10
27秒前
27秒前
zz完成签到 ,获得积分10
28秒前
我是老大应助能干的孤丝采纳,获得10
28秒前
29秒前
YYYCCCCC完成签到,获得积分10
30秒前
彬墩墩完成签到,获得积分10
30秒前
充电宝应助有点水采纳,获得10
30秒前
32秒前
32秒前
CipherSage应助zmin采纳,获得10
35秒前
36秒前
37秒前
38秒前
侃侃完成签到,获得积分10
38秒前
huanhuan发布了新的文献求助10
38秒前
张同学快去做实验呀完成签到,获得积分10
40秒前
40秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464245
求助须知:如何正确求助?哪些是违规求助? 3057540
关于积分的说明 9057583
捐赠科研通 2747637
什么是DOI,文献DOI怎么找? 1507432
科研通“疑难数据库(出版商)”最低求助积分说明 696553
邀请新用户注册赠送积分活动 696083