A Dual-View Fusion Network for Automatic Spinal Keypoint Detection in Biplane X-ray Images

子网 人工智能 计算机视觉 计算机科学 模式识别(心理学) 计算机安全
作者
Dandan Zhou,Lijun Guo,Rong Zhang,Xiuchao He,Qiang Wang,Jianhua Wang
标识
DOI:10.1109/bibm58861.2023.10385670
摘要

Accurate keypoint detection in medical images of the spine is critical for the assessment, diagnosis, treatment planning, and clinical investigation of spinal deformities. However, due to severe occlusions of spinal structures in lateral X-ray images, accurate keypoint detection can be hardly achieved in lateral X-ray images based on single-view information. Thus, methods based on both the anterior-posterior (AP) and lateral (LAT) X-ray image views have been proposed to alleviate occlusion problems and achieve better keypoint detection performance. Although some progress has been made with these dual-view methods, they do not effectively exploit a priori knowledge of the spine and hence cannot adequately account for the structural correlation of the vertebrae across views. In this paper, a new dual-view fusion network (DVFNet) framework is proposed for keypoint detection in spinal X-ray images. This framework obtains structural correlations between AP and LAT views of the spine based on a priori spine knowledge represented by high-level semantic features. Meanwhile, the proposed framework combines local and global features extracted respectively by a local subnetwork and a global subnetwork. On the one hand, the local subnetwork is constructed as an enhanced codec structure based on both the AP and LAT views. This subnetwork is trained to output local features that contain both joint semantic features of the two views and independent fine-grained features of each individual view. This scheme leads to accurate keypoint estimation locally. On the other hand, the global subnetwork utilizes a self-attention mechanism to extract view-specific global features based on either the AP view or the LAT view in order to eliminate ambiguity, and reduce confusion on keypoint locations. Further, we propose a weighted feature fusion (WFF) module for adaptive fusion of the local and global features. We evaluated the DVFNet model on a private dataset and found that our proposed method achieves more accurate spinal keypoint detection compared to other state-of-the-art methods, and thus our method can provide reliable assistance to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王哒哒完成签到,获得积分10
刚刚
MFNM完成签到,获得积分10
刚刚
樊书雪完成签到,获得积分10
1秒前
qq完成签到,获得积分20
1秒前
幽默发卡完成签到,获得积分10
2秒前
嗯哼啊嘿嘿哟喂完成签到,获得积分10
2秒前
含糊的画板完成签到,获得积分10
6秒前
6秒前
三个地方户籍卡完成签到,获得积分10
8秒前
SamuelLiu完成签到,获得积分10
11秒前
小秋发布了新的文献求助10
12秒前
王磊完成签到,获得积分10
16秒前
123完成签到,获得积分10
17秒前
灵巧的导师完成签到,获得积分10
18秒前
Bressanone完成签到,获得积分10
19秒前
jimmy完成签到 ,获得积分10
20秒前
Yuan完成签到 ,获得积分10
21秒前
BUHUIWAN完成签到,获得积分20
21秒前
快乐的奕涵完成签到,获得积分10
22秒前
23秒前
无相完成签到 ,获得积分10
23秒前
痕丶歆完成签到 ,获得积分10
25秒前
自由的姿完成签到,获得积分10
25秒前
温柔梦易完成签到,获得积分10
25秒前
沙克几十块完成签到,获得积分10
25秒前
26秒前
ppc524完成签到,获得积分10
27秒前
潇湘夜雨完成签到,获得积分10
27秒前
小李叭叭完成签到,获得积分10
28秒前
wsr完成签到,获得积分10
28秒前
复杂的板凳完成签到,获得积分10
29秒前
失眠夏山完成签到,获得积分10
30秒前
Mingtiaoxiyue完成签到,获得积分10
31秒前
子不语发布了新的文献求助10
31秒前
超级小熊猫完成签到 ,获得积分10
32秒前
学渣一枚完成签到 ,获得积分10
32秒前
莴苣完成签到,获得积分10
32秒前
像猫的狗完成签到 ,获得积分10
34秒前
34秒前
阿超发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965813
求助须知:如何正确求助?哪些是违规求助? 3511146
关于积分的说明 11156382
捐赠科研通 3245736
什么是DOI,文献DOI怎么找? 1793118
邀请新用户注册赠送积分活动 874230
科研通“疑难数据库(出版商)”最低求助积分说明 804268