亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Dual-View Fusion Network for Automatic Spinal Keypoint Detection in Biplane X-ray Images

子网 人工智能 计算机视觉 计算机科学 模式识别(心理学) 计算机安全
作者
Dandan Zhou,Lijun Guo,Rong Zhang,Xiuchao He,Qiang Wang,Jianhua Wang
标识
DOI:10.1109/bibm58861.2023.10385670
摘要

Accurate keypoint detection in medical images of the spine is critical for the assessment, diagnosis, treatment planning, and clinical investigation of spinal deformities. However, due to severe occlusions of spinal structures in lateral X-ray images, accurate keypoint detection can be hardly achieved in lateral X-ray images based on single-view information. Thus, methods based on both the anterior-posterior (AP) and lateral (LAT) X-ray image views have been proposed to alleviate occlusion problems and achieve better keypoint detection performance. Although some progress has been made with these dual-view methods, they do not effectively exploit a priori knowledge of the spine and hence cannot adequately account for the structural correlation of the vertebrae across views. In this paper, a new dual-view fusion network (DVFNet) framework is proposed for keypoint detection in spinal X-ray images. This framework obtains structural correlations between AP and LAT views of the spine based on a priori spine knowledge represented by high-level semantic features. Meanwhile, the proposed framework combines local and global features extracted respectively by a local subnetwork and a global subnetwork. On the one hand, the local subnetwork is constructed as an enhanced codec structure based on both the AP and LAT views. This subnetwork is trained to output local features that contain both joint semantic features of the two views and independent fine-grained features of each individual view. This scheme leads to accurate keypoint estimation locally. On the other hand, the global subnetwork utilizes a self-attention mechanism to extract view-specific global features based on either the AP view or the LAT view in order to eliminate ambiguity, and reduce confusion on keypoint locations. Further, we propose a weighted feature fusion (WFF) module for adaptive fusion of the local and global features. We evaluated the DVFNet model on a private dataset and found that our proposed method achieves more accurate spinal keypoint detection compared to other state-of-the-art methods, and thus our method can provide reliable assistance to clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半枝桃完成签到 ,获得积分10
刚刚
巫马百招完成签到,获得积分10
1秒前
魔幻诗兰完成签到,获得积分10
4秒前
Cc完成签到 ,获得积分10
6秒前
9秒前
一一一多完成签到 ,获得积分10
12秒前
善学以致用应助成太采纳,获得10
16秒前
17秒前
弦和完成签到,获得积分10
17秒前
群山完成签到 ,获得积分10
19秒前
乐乐发布了新的文献求助10
22秒前
强强完成签到 ,获得积分10
22秒前
26秒前
DocM完成签到 ,获得积分10
27秒前
乐乐完成签到,获得积分20
28秒前
成太发布了新的文献求助10
32秒前
34秒前
JL完成签到,获得积分10
35秒前
36秒前
GingerF应助ccc采纳,获得200
36秒前
小宝贝啥也不懂应助乐乐采纳,获得10
37秒前
wyx发布了新的文献求助10
39秒前
Ava应助野生菜狗采纳,获得30
39秒前
Luffy发布了新的文献求助10
39秒前
活泼的夏旋完成签到 ,获得积分10
40秒前
坚定背包完成签到,获得积分10
41秒前
nove999完成签到 ,获得积分10
43秒前
呆萌念云完成签到 ,获得积分10
44秒前
所所应助林钰浩采纳,获得10
44秒前
科研通AI6应助absb采纳,获得10
48秒前
科研通AI6应助absb采纳,获得10
48秒前
岚12完成签到 ,获得积分10
48秒前
Hello应助absb采纳,获得10
48秒前
科研通AI6应助absb采纳,获得10
48秒前
科研通AI6应助absb采纳,获得10
48秒前
48秒前
49秒前
平淡如天完成签到,获得积分10
50秒前
zzy完成签到 ,获得积分10
54秒前
野生菜狗发布了新的文献求助30
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356425
求助须知:如何正确求助?哪些是违规求助? 4488220
关于积分的说明 13971856
捐赠科研通 4389076
什么是DOI,文献DOI怎么找? 2411395
邀请新用户注册赠送积分活动 1403924
关于科研通互助平台的介绍 1377828