Inkjet printer prediction under complicated printing conditions based on microscopic image features

3d打印机 人工智能 计算机科学 线性判别分析 威尔科克森符号秩检验 模式识别(心理学) 二次分类器 图像(数学) 判别式 计算机视觉 数学 工程类 支持向量机 统计 曼惠特尼U检验 机械工程
作者
Yanling Liu,Zi‐Feng Jiang,Guanglei Zhou,Yawen Zhao,Yu-yu Hao,Jing‐Yuan Xu,Xu Yang,Xiaohong Chen
出处
期刊:Science & Justice [Elsevier BV]
卷期号:64 (3): 269-278 被引量:1
标识
DOI:10.1016/j.scijus.2024.03.001
摘要

A novel technique is introduced to predict the printer model used to produce a given document. Samples containing only a few letters printed under varying conditions (i.e., different printing modes, letter types, fonts) were collected to establish a dataset of 41 inkjet printer models from common manufacturers, such as HP, Canon, and Epson. Morphological features were analyzed by extraction of image features using several algorithms in a series of microscopic images and a Wilcoxon test was used to measure the significance of variations between printed samples. Significant differences between various printing conditions might post potential challenge to questioned document examination. Discriminant analysis and the k-nearest neighbor (KNN) algorithm were also employed for source printer prediction under varying printing condition on 30% images with the rest images as training dataset. The results of a validation experiment demonstrated that while quadratic discriminant analysis (QDA) achieved an accuracy of 96.3%, a combination of KNN and QDA reached 98.6%. As such, this technique could aid in the forensic examination of printed documents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助韋晴采纳,获得10
刚刚
量子星尘发布了新的文献求助10
刚刚
alan完成签到 ,获得积分10
刚刚
沐浠发布了新的文献求助10
1秒前
舒心的满天完成签到 ,获得积分10
2秒前
cyanpomelo发布了新的文献求助10
2秒前
丘比特应助若尘采纳,获得10
2秒前
3秒前
CodeCraft应助yangfeidong采纳,获得10
4秒前
chenshiyi185完成签到,获得积分10
5秒前
快乐的胖子应助三哥采纳,获得30
5秒前
7秒前
斯文钢笔完成签到 ,获得积分10
8秒前
9秒前
山雀完成签到,获得积分10
9秒前
BINGBONG关注了科研通微信公众号
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助11采纳,获得10
13秒前
yangfeidong发布了新的文献求助10
15秒前
15秒前
16秒前
心猿应助g0123采纳,获得10
17秒前
17秒前
yuilcl发布了新的文献求助10
18秒前
wbshore发布了新的文献求助10
20秒前
20秒前
聪慧的正豪应助郑浩采纳,获得10
21秒前
量子星尘发布了新的文献求助10
23秒前
23秒前
orixero应助巧乐兹采纳,获得10
25秒前
瓦力文发布了新的文献求助10
25秒前
28秒前
生动大白菜真实的钥匙完成签到 ,获得积分10
29秒前
29秒前
CipherSage应助yuilcl采纳,获得10
30秒前
香蕉觅云应助嗬娜采纳,获得10
30秒前
坦率网络发布了新的文献求助10
30秒前
Jasper应助小巩采纳,获得10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941102
求助须知:如何正确求助?哪些是违规求助? 4207170
关于积分的说明 13076816
捐赠科研通 3985940
什么是DOI,文献DOI怎么找? 2182404
邀请新用户注册赠送积分活动 1197920
关于科研通互助平台的介绍 1110281