Anthrax Toxin: Model System for Studying Protein Translocation

转位酶 炭疽毒素 生物物理学 易位 化学 染色体易位 生物 生物化学 融合蛋白 基因 重组DNA
作者
Bryan A. Krantz
出处
期刊:Journal of Molecular Biology [Elsevier]
卷期号:436 (8): 168521-168521
标识
DOI:10.1016/j.jmb.2024.168521
摘要

Dedicated translocase channels are nanomachines that often, but not always, unfold and translocate proteins through narrow pores across the membrane. Generally, these molecular machines utilize external sources of free energy to drive these reactions, since folded proteins are thermodynamically stable, and once unfolded they contain immense diffusive configurational entropy. To catalyze unfolding and translocate the unfolded state at appreciable timescales, translocase channels often utilize analogous peptide-clamp active sites. Here we describe how anthrax toxin has been used as a biophysical model system to study protein translocation. The tripartite bacterial toxin is composed of an oligomeric translocase channel, protective antigen (PA), and two enzymes, edema factor (EF) and lethal factor (LF), which are translocated by PA into mammalian host cells. Unfolding and translocation are powered by the endosomal proton gradient and are catalyzed by three peptide-clamp sites in the PA channel: the α clamp, the ϕ clamp, and the charge clamp. These clamp sites interact nonspecifically with the chemically complex translocating chain, serve to minimize unfolded state configurational entropy, and work cooperatively to promote translocation. Two models of proton gradient driven translocation have been proposed: (i) an extended-chain Brownian ratchet mechanism and (ii) a proton-driven helix-compression mechanism. These models are not mutually exclusive; instead the extended-chain Brownian ratchet likely operates on β-sheet sequences and the helix-compression mechanism likely operates on α-helical sequences. Finally, we compare and contrast anthrax toxin with other related and unrelated translocase channels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助Ripples采纳,获得10
刚刚
刚刚
我是老大应助乐园采纳,获得10
1秒前
2秒前
个木发布了新的文献求助10
2秒前
谨慎不二发布了新的文献求助10
2秒前
CodeCraft应助lishunzcqty采纳,获得10
3秒前
青丝落花完成签到,获得积分10
3秒前
化学小学生完成签到,获得积分10
3秒前
4秒前
完美世界应助高高迎蓉采纳,获得10
4秒前
已拿捏催化剂完成签到 ,获得积分10
4秒前
WJM发布了新的文献求助10
4秒前
左丘忻完成签到,获得积分10
4秒前
5秒前
端庄的萝发布了新的文献求助20
5秒前
孟严青完成签到,获得积分10
5秒前
livra1058完成签到,获得积分10
5秒前
wonderting完成签到,获得积分10
5秒前
无敌小汐完成签到,获得积分10
6秒前
6秒前
圈圈发布了新的文献求助10
6秒前
EW完成签到,获得积分10
6秒前
7秒前
金鸡奖完成签到,获得积分10
7秒前
研友_LNB7rL完成签到,获得积分10
7秒前
11发布了新的文献求助10
8秒前
经法发布了新的文献求助10
8秒前
bjbbh完成签到,获得积分10
9秒前
Skyrin发布了新的文献求助10
9秒前
9秒前
阿蒙完成签到,获得积分10
10秒前
传奇3应助个木采纳,获得10
10秒前
10秒前
ShawnWei完成签到,获得积分10
10秒前
飘逸秋荷完成签到,获得积分10
10秒前
年年完成签到,获得积分10
10秒前
11秒前
11秒前
四季刻歌发布了新的文献求助20
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678