MedMamba: Vision Mamba for Medical Image Classification

人工智能 计算机视觉 图像(数学) 计算机科学 验光服务 地理 医学
作者
Yubiao Yue,Zhenzhang Li
出处
期刊:Cornell University - arXiv 被引量:24
标识
DOI:10.48550/arxiv.2403.03849
摘要

Medical image classification is a very fundamental and crucial task in the field of computer vision. These years, CNN-based and Transformer-based models are widely used in classifying various medical images. Unfortunately, The limitation of CNNs in long-range modeling capabilities prevent them from effectively extracting fine-grained features in medical images , while Transformers are hampered by their quadratic computational complexity. Recent research has shown that the state space model (SSM) represented by Mamba can efficiently model long-range interactions while maintaining linear computational complexity. Inspired by this, we propose Vision Mamba for medical image classification (MedMamba). More specifically, we introduce a novel Conv-SSM module, which combines the local feature extraction ability of convolutional layers with the ability of SSM to capture long-range dependency. To demonstrate the potential of MedMamba, we conduct extensive experiments using three publicly available medical datasets with different imaging techniques (i.e., Kvasir (endoscopic images), FETAL_PLANES_DB (ultrasound images) and Covid19-Pneumonia-Normal Chest X-Ray (X-ray images)) and two private datasets built by ourselves. Experimental results show that the proposed MedMamba performs well in detecting lesions in various medical images. To the best of our knowledge, this is the first Vision Mamba tailored for medical image classification. The purpose of this work is to establish a new baseline for medical image classification tasks and provide valuable insights for the future development of more efficient and effective SSM-based artificial intelligence algorithms and application systems in the medical. Source code has been available at https://github.com/YubiaoYue/MedMamba.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
隐形荟发布了新的文献求助10
3秒前
Jasper应助严笑容采纳,获得30
3秒前
田様应助854fycchjh采纳,获得10
4秒前
宇_y246完成签到,获得积分20
4秒前
5秒前
粱如波发布了新的文献求助10
6秒前
7秒前
高高的山兰完成签到 ,获得积分10
8秒前
宇_y246发布了新的文献求助10
9秒前
Terahertz完成签到 ,获得积分10
11秒前
从心从心完成签到,获得积分10
11秒前
mauve完成签到 ,获得积分10
15秒前
15秒前
闫132完成签到,获得积分10
16秒前
粱如波完成签到,获得积分10
17秒前
Andrew完成签到,获得积分10
18秒前
18秒前
19秒前
无花果应助陈倩采纳,获得10
21秒前
西安浴日光能赵炜完成签到,获得积分10
22秒前
Liuhui完成签到 ,获得积分10
22秒前
23秒前
临天下完成签到,获得积分10
23秒前
aser发布了新的文献求助10
23秒前
24秒前
25秒前
痴情的博超应助cc采纳,获得10
26秒前
27秒前
宣孤菱发布了新的文献求助10
28秒前
隐形荟发布了新的文献求助10
30秒前
aser完成签到,获得积分10
31秒前
32秒前
单纯的逊完成签到,获得积分10
35秒前
wk_sea发布了新的文献求助10
35秒前
Luyao完成签到,获得积分10
36秒前
38秒前
Yamila完成签到,获得积分10
39秒前
40秒前
小刀发布了新的文献求助10
42秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792