亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation

特征(语言学) 分割 肺癌 人工智能 计算机视觉 计算机科学 材料科学 模式识别(心理学) 医学 病理 哲学 语言学
作者
GILBERT langat,Beiji Zou,Xiaoyan Kui,Kevin Njagi
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
卷期号:22 (6): 31-64 被引量:1
标识
DOI:10.1615/intjmultcompeng.2024052181
摘要

A deadly disease that affects people in various countries in the world is lung cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional computer-aided diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depend on these processes. The LC classification from computed tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates residual network (ResNet), visual geometry group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature-pool features are provided to the enhanced long short-term memory with attention mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy segments. The classifier's parameters are optimized with the help of the modified fluctuation-based queuing search algorithm (MF-QSA). The output from implementing the suggested model on 3D-CT images from Lung Nodule Analysis of 2016, with a sample of 888 CT scans with 1186 nodules dataset, achieved; Accuracy 90.9%, Precision 91.1%, Sensitivity 91%, Specificity 90.8%, and F-Score 91%, which shows that the generated framework for LC detection is better than existing models for LC classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
清脆遥完成签到,获得积分10
10秒前
liuyuan完成签到,获得积分20
20秒前
21秒前
zqq完成签到,获得积分0
34秒前
35秒前
无辜的傲安完成签到,获得积分20
41秒前
范范发布了新的文献求助10
42秒前
48秒前
隐形曼青应助无辜的傲安采纳,获得10
49秒前
清脆遥发布了新的文献求助10
54秒前
刘敏完成签到 ,获得积分10
55秒前
1分钟前
菜菜发布了新的文献求助10
1分钟前
1分钟前
tao完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
范范发布了新的文献求助10
1分钟前
小二郎应助范范采纳,获得10
1分钟前
1分钟前
07应助科研通管家采纳,获得30
1分钟前
tuanheqi应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
尘尘完成签到,获得积分10
1分钟前
范范完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
zheng-homes发布了新的文献求助10
1分钟前
Jiangnj发布了新的文献求助30
1分钟前
ding应助zheng-homes采纳,获得10
1分钟前
orixero应助Jiangnj采纳,获得30
1分钟前
1分钟前
1分钟前
2分钟前
虚心的渊思完成签到,获得积分10
2分钟前
2分钟前
2分钟前
sijing发布了新的文献求助10
2分钟前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341779
求助须知:如何正确求助?哪些是违规求助? 2969199
关于积分的说明 8637576
捐赠科研通 2648889
什么是DOI,文献DOI怎么找? 1450383
科研通“疑难数据库(出版商)”最低求助积分说明 671902
邀请新用户注册赠送积分活动 660966