Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation

特征(语言学) 分割 肺癌 人工智能 计算机视觉 计算机科学 材料科学 模式识别(心理学) 医学 病理 哲学 语言学
作者
GILBERT langat,Beiji Zou,Xiaoyan Kui,Kevin Njagi
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House Inc.]
卷期号:22 (6): 31-64 被引量:1
标识
DOI:10.1615/intjmultcompeng.2024052181
摘要

A deadly disease that affects people in various countries in the world is lung cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional computer-aided diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depend on these processes. The LC classification from computed tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates residual network (ResNet), visual geometry group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature-pool features are provided to the enhanced long short-term memory with attention mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy segments. The classifier's parameters are optimized with the help of the modified fluctuation-based queuing search algorithm (MF-QSA). The output from implementing the suggested model on 3D-CT images from Lung Nodule Analysis of 2016, with a sample of 888 CT scans with 1186 nodules dataset, achieved; Accuracy 90.9%, Precision 91.1%, Sensitivity 91%, Specificity 90.8%, and F-Score 91%, which shows that the generated framework for LC detection is better than existing models for LC classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LV发布了新的文献求助10
刚刚
落后寄琴完成签到,获得积分10
刚刚
刚刚
Spice发布了新的文献求助10
1秒前
LOO完成签到,获得积分10
1秒前
mmnn完成签到 ,获得积分10
1秒前
下克斯发布了新的文献求助10
1秒前
1秒前
喜宝发布了新的文献求助10
1秒前
2秒前
newman完成签到,获得积分10
2秒前
2秒前
2秒前
DrWang完成签到,获得积分10
3秒前
什么发布了新的文献求助10
3秒前
滕滕应助Haiyang采纳,获得10
3秒前
拓跋子轩发布了新的文献求助10
3秒前
4秒前
4秒前
安静语山完成签到 ,获得积分20
4秒前
4秒前
长情砖头完成签到,获得积分10
5秒前
5秒前
LOO发布了新的文献求助20
6秒前
6秒前
6秒前
碗_发布了新的文献求助30
6秒前
科研通AI6应助迅速如柏采纳,获得20
7秒前
Brain发布了新的文献求助10
7秒前
GXL完成签到,获得积分10
7秒前
Akim应助Mmxn采纳,获得10
7秒前
小兵完成签到,获得积分10
7秒前
lipaul完成签到 ,获得积分10
7秒前
温柔傲安发布了新的文献求助10
8秒前
小余同学发布了新的文献求助10
8秒前
ice发布了新的文献求助10
8秒前
8秒前
8秒前
脑洞疼应助roshan采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551982
求助须知:如何正确求助?哪些是违规求助? 4636809
关于积分的说明 14645565
捐赠科研通 4578578
什么是DOI,文献DOI怎么找? 2511030
邀请新用户注册赠送积分活动 1486209
关于科研通互助平台的介绍 1457502