Multiscale 3D TransUNet-aided Tumor Segmentation and Multi-Cascaded Model for Lung Cancer Diagnosis System from 3D CT Images with Fused Feature Pool Formation

特征(语言学) 分割 肺癌 人工智能 计算机视觉 计算机科学 材料科学 模式识别(心理学) 医学 病理 哲学 语言学
作者
GILBERT langat,Beiji Zou,Xiaoyan Kui,Kevin Njagi
出处
期刊:International Journal for Multiscale Computational Engineering [Begell House]
卷期号:22 (6): 31-64 被引量:1
标识
DOI:10.1615/intjmultcompeng.2024052181
摘要

A deadly disease that affects people in various countries in the world is lung cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional computer-aided diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depend on these processes. The LC classification from computed tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates residual network (ResNet), visual geometry group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature-pool features are provided to the enhanced long short-term memory with attention mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy segments. The classifier's parameters are optimized with the help of the modified fluctuation-based queuing search algorithm (MF-QSA). The output from implementing the suggested model on 3D-CT images from Lung Nodule Analysis of 2016, with a sample of 888 CT scans with 1186 nodules dataset, achieved; Accuracy 90.9%, Precision 91.1%, Sensitivity 91%, Specificity 90.8%, and F-Score 91%, which shows that the generated framework for LC detection is better than existing models for LC classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
我是老大应助zf采纳,获得10
2秒前
4秒前
5秒前
今后应助奥德彪拉香蕉采纳,获得10
5秒前
罗是一发布了新的文献求助10
5秒前
阚曦完成签到,获得积分10
6秒前
19205100313发布了新的文献求助10
6秒前
7秒前
7秒前
靠谱发布了新的文献求助10
7秒前
暮春之初发布了新的文献求助10
8秒前
清脆书琴完成签到,获得积分10
9秒前
9秒前
天顺完成签到,获得积分10
9秒前
lxx完成签到,获得积分10
10秒前
10秒前
meimei发布了新的文献求助10
10秒前
花花呀完成签到,获得积分10
11秒前
张达发布了新的文献求助10
11秒前
打打应助超超采纳,获得10
12秒前
重要的冰绿完成签到,获得积分10
12秒前
CiCi完成签到,获得积分10
13秒前
魔幻安筠发布了新的文献求助10
13秒前
13秒前
天顺发布了新的文献求助10
13秒前
西瓜周氏发布了新的文献求助10
13秒前
难过千易发布了新的文献求助10
13秒前
lixia完成签到 ,获得积分10
14秒前
orixero应助靠谱采纳,获得10
14秒前
14秒前
田様应助骆驼顶顶采纳,获得10
15秒前
纯情女大完成签到 ,获得积分10
16秒前
naki发布了新的文献求助10
16秒前
小二郎应助yuchangkun采纳,获得10
17秒前
大个应助孤独妙海采纳,获得10
17秒前
科目三应助靓丽月饼采纳,获得10
17秒前
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142