Real-time video surveillance on highways using combination of extended Kalman Filter and deep reinforcement learning

强化学习 扩展卡尔曼滤波器 计算机科学 人工智能 鉴定(生物学) 卡尔曼滤波器 自动化 卷积神经网络 深度学习 机器学习 粒子群优化 工程类 机械工程 植物 生物
作者
Liangju Fu,Qiang Zhang,Shengli Tian
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e26467-e26467
标识
DOI:10.1016/j.heliyon.2024.e26467
摘要

Abstract

Highways, as one of the main arteries of transit and transportation in today's world, play a fundamental role in accelerating transportation, and for this reason, continuous monitoring of them is of great importance. Among these, monitoring compliance with transportation laws by vehicles is of utmost importance; for automation, efficient and vehicle-specific models can be used. In this article, a new method for video surveillance of highways is presented using an extended Kalman filter (EKF) and reinforcement learning models. There are three primary stages to the suggested approach. During the first stage, the extended Kalman filter (EKF) is used to identify and track multiple targets. Next, in the second stage, a convolutional neural network (CNN) processes each detected moving item to determine the kind of vehicle. During this stage, the CNN model's ideal configuration is ascertained using a new optimization approach that combines Particle Swarm Optimization (PSO) and reinforcement learning. After identifying the type of vehicle, in the third phase, the proposed method uses a separate CNN model for each target vehicle to assess its compliance with transportation safety principles. It should be mentioned that each vehicle's associated CNN model is configured during this phase using the suggested optimization methodology. Investigations have been conducted into the effectiveness of the suggested method in identifying violations of road safety laws as well as how well it performed in the two phases of vehicle type identification. According to the findings, the suggested approach can identify the kind of vehicle with 98.72% accuracy, which is at least 3.41% better than the approaches that were compared. On the other hand, this model can detect the violation of road safety laws for each vehicle with an average accuracy of 91.5%, which shows at least a 3.49% improvement compared to the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邓帆完成签到,获得积分10
刚刚
单薄碧灵发布了新的文献求助10
刚刚
hahahayi完成签到,获得积分10
刚刚
漫画完成签到,获得积分10
刚刚
是小袁呀完成签到 ,获得积分10
2秒前
林小乌龟完成签到,获得积分10
2秒前
打工人发布了新的文献求助10
2秒前
hahahayi发布了新的文献求助10
3秒前
3秒前
FBQZDJG2122完成签到,获得积分10
3秒前
所所应助雨过天晴采纳,获得10
3秒前
沉默的红牛完成签到 ,获得积分10
3秒前
三毛发布了新的文献求助10
3秒前
任清炎完成签到,获得积分0
3秒前
3秒前
4秒前
漂移猪完成签到 ,获得积分0
4秒前
赘婿应助嗯呢采纳,获得10
5秒前
。?。完成签到 ,获得积分10
5秒前
麓谷发布了新的文献求助10
5秒前
Auditor完成签到 ,获得积分10
5秒前
misa完成签到 ,获得积分10
5秒前
壮壮完成签到 ,获得积分10
6秒前
吖桶发布了新的文献求助10
6秒前
potassalt完成签到 ,获得积分10
6秒前
Fiona03完成签到 ,获得积分10
6秒前
魏笑白完成签到 ,获得积分10
6秒前
科研小白牛牛完成签到 ,获得积分10
7秒前
暮暮完成签到,获得积分10
7秒前
Sally发布了新的文献求助10
8秒前
格子完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
可靠松发布了新的文献求助10
8秒前
子车傲之完成签到,获得积分10
9秒前
fbh1完成签到,获得积分10
10秒前
10秒前
10秒前
乐乐应助麦麦脆汁猪采纳,获得10
11秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121907
求助须知:如何正确求助?哪些是违规求助? 2772301
关于积分的说明 7712917
捐赠科研通 2427747
什么是DOI,文献DOI怎么找? 1289466
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169