清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time video surveillance on highways using combination of extended Kalman Filter and deep reinforcement learning

强化学习 扩展卡尔曼滤波器 计算机科学 人工智能 鉴定(生物学) 卡尔曼滤波器 自动化 卷积神经网络 深度学习 机器学习 粒子群优化 工程类 植物 机械工程 生物
作者
Liangju Fu,Qiang Zhang,Shengli Tian
出处
期刊:Heliyon [Elsevier]
卷期号:10 (5): e26467-e26467
标识
DOI:10.1016/j.heliyon.2024.e26467
摘要

Abstract

Highways, as one of the main arteries of transit and transportation in today's world, play a fundamental role in accelerating transportation, and for this reason, continuous monitoring of them is of great importance. Among these, monitoring compliance with transportation laws by vehicles is of utmost importance; for automation, efficient and vehicle-specific models can be used. In this article, a new method for video surveillance of highways is presented using an extended Kalman filter (EKF) and reinforcement learning models. There are three primary stages to the suggested approach. During the first stage, the extended Kalman filter (EKF) is used to identify and track multiple targets. Next, in the second stage, a convolutional neural network (CNN) processes each detected moving item to determine the kind of vehicle. During this stage, the CNN model's ideal configuration is ascertained using a new optimization approach that combines Particle Swarm Optimization (PSO) and reinforcement learning. After identifying the type of vehicle, in the third phase, the proposed method uses a separate CNN model for each target vehicle to assess its compliance with transportation safety principles. It should be mentioned that each vehicle's associated CNN model is configured during this phase using the suggested optimization methodology. Investigations have been conducted into the effectiveness of the suggested method in identifying violations of road safety laws as well as how well it performed in the two phases of vehicle type identification. According to the findings, the suggested approach can identify the kind of vehicle with 98.72% accuracy, which is at least 3.41% better than the approaches that were compared. On the other hand, this model can detect the violation of road safety laws for each vehicle with an average accuracy of 91.5%, which shows at least a 3.49% improvement compared to the other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Ava应助ZHY采纳,获得10
12秒前
研友_alan完成签到 ,获得积分10
20秒前
紫焰完成签到 ,获得积分10
43秒前
无悔完成签到 ,获得积分10
49秒前
1分钟前
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
1分钟前
年轻绮波完成签到,获得积分10
1分钟前
时老完成签到 ,获得积分10
2分钟前
闲人颦儿完成签到,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
笔墨纸砚完成签到 ,获得积分10
3分钟前
阿洁完成签到,获得积分10
3分钟前
阿洁发布了新的文献求助10
4分钟前
复杂白凡应助阿洁采纳,获得10
4分钟前
菠萝包完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助Maomaojiangjiang采纳,获得10
4分钟前
4分钟前
KINGAZX完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
打打应助科研通管家采纳,获得10
5分钟前
5分钟前
充电宝应助哭泣的芷蝶采纳,获得10
5分钟前
江南之南完成签到 ,获得积分10
5分钟前
5分钟前
chichenglin完成签到 ,获得积分0
6分钟前
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
斯文听寒完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5529358
求助须知:如何正确求助?哪些是违规求助? 4618481
关于积分的说明 14562694
捐赠科研通 4557545
什么是DOI,文献DOI怎么找? 2497604
邀请新用户注册赠送积分活动 1477776
关于科研通互助平台的介绍 1449269