清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Real-time video surveillance on highways using combination of extended Kalman Filter and deep reinforcement learning

强化学习 扩展卡尔曼滤波器 计算机科学 人工智能 鉴定(生物学) 卡尔曼滤波器 自动化 卷积神经网络 深度学习 机器学习 粒子群优化 工程类 机械工程 植物 生物
作者
Liangju Fu,Qiang Zhang,Shengli Tian
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (5): e26467-e26467
标识
DOI:10.1016/j.heliyon.2024.e26467
摘要

Abstract

Highways, as one of the main arteries of transit and transportation in today's world, play a fundamental role in accelerating transportation, and for this reason, continuous monitoring of them is of great importance. Among these, monitoring compliance with transportation laws by vehicles is of utmost importance; for automation, efficient and vehicle-specific models can be used. In this article, a new method for video surveillance of highways is presented using an extended Kalman filter (EKF) and reinforcement learning models. There are three primary stages to the suggested approach. During the first stage, the extended Kalman filter (EKF) is used to identify and track multiple targets. Next, in the second stage, a convolutional neural network (CNN) processes each detected moving item to determine the kind of vehicle. During this stage, the CNN model's ideal configuration is ascertained using a new optimization approach that combines Particle Swarm Optimization (PSO) and reinforcement learning. After identifying the type of vehicle, in the third phase, the proposed method uses a separate CNN model for each target vehicle to assess its compliance with transportation safety principles. It should be mentioned that each vehicle's associated CNN model is configured during this phase using the suggested optimization methodology. Investigations have been conducted into the effectiveness of the suggested method in identifying violations of road safety laws as well as how well it performed in the two phases of vehicle type identification. According to the findings, the suggested approach can identify the kind of vehicle with 98.72% accuracy, which is at least 3.41% better than the approaches that were compared. On the other hand, this model can detect the violation of road safety laws for each vehicle with an average accuracy of 91.5%, which shows at least a 3.49% improvement compared to the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
11秒前
佳佳应助华东小可爱采纳,获得10
18秒前
量子星尘发布了新的文献求助10
28秒前
37秒前
阿泽完成签到 ,获得积分10
1分钟前
青出于蓝蔡完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
紫熊发布了新的文献求助10
1分钟前
华仔应助墨池采纳,获得10
1分钟前
xyjf15完成签到,获得积分10
1分钟前
1分钟前
2分钟前
庄彧完成签到 ,获得积分10
2分钟前
2分钟前
最最最发布了新的文献求助10
2分钟前
2分钟前
在水一方应助最最最采纳,获得10
2分钟前
111111111发布了新的文献求助10
2分钟前
2分钟前
华东小可爱完成签到,获得积分10
2分钟前
小天使海蒂完成签到 ,获得积分10
2分钟前
有志者发布了新的文献求助10
2分钟前
2分钟前
爆米花应助科研通管家采纳,获得10
3分钟前
有志者完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
懒狗羊完成签到,获得积分10
3分钟前
直率的笑翠完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
cadcae完成签到,获得积分10
4分钟前
杨天天完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
轩辕冰夏发布了新的文献求助20
4分钟前
5分钟前
轩辕冰夏完成签到,获得积分10
5分钟前
5分钟前
Eric800824完成签到 ,获得积分10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111267
捐赠科研通 3234174
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264