Real-time video surveillance on highways using combination of extended Kalman Filter and deep reinforcement learning

强化学习 扩展卡尔曼滤波器 计算机科学 人工智能 鉴定(生物学) 卡尔曼滤波器 自动化 卷积神经网络 深度学习 机器学习 粒子群优化 工程类 机械工程 植物 生物
作者
Liangju Fu,Qiang Zhang,Shengli Tian
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (5): e26467-e26467
标识
DOI:10.1016/j.heliyon.2024.e26467
摘要

Abstract

Highways, as one of the main arteries of transit and transportation in today's world, play a fundamental role in accelerating transportation, and for this reason, continuous monitoring of them is of great importance. Among these, monitoring compliance with transportation laws by vehicles is of utmost importance; for automation, efficient and vehicle-specific models can be used. In this article, a new method for video surveillance of highways is presented using an extended Kalman filter (EKF) and reinforcement learning models. There are three primary stages to the suggested approach. During the first stage, the extended Kalman filter (EKF) is used to identify and track multiple targets. Next, in the second stage, a convolutional neural network (CNN) processes each detected moving item to determine the kind of vehicle. During this stage, the CNN model's ideal configuration is ascertained using a new optimization approach that combines Particle Swarm Optimization (PSO) and reinforcement learning. After identifying the type of vehicle, in the third phase, the proposed method uses a separate CNN model for each target vehicle to assess its compliance with transportation safety principles. It should be mentioned that each vehicle's associated CNN model is configured during this phase using the suggested optimization methodology. Investigations have been conducted into the effectiveness of the suggested method in identifying violations of road safety laws as well as how well it performed in the two phases of vehicle type identification. According to the findings, the suggested approach can identify the kind of vehicle with 98.72% accuracy, which is at least 3.41% better than the approaches that were compared. On the other hand, this model can detect the violation of road safety laws for each vehicle with an average accuracy of 91.5%, which shows at least a 3.49% improvement compared to the other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
DY完成签到,获得积分10
3秒前
丘比特应助yy采纳,获得10
3秒前
量子星尘发布了新的文献求助10
4秒前
栗子完成签到,获得积分10
4秒前
动听的弼完成签到 ,获得积分10
4秒前
鬲木发布了新的文献求助10
4秒前
积极觅海发布了新的文献求助10
5秒前
6秒前
独行侠完成签到,获得积分10
6秒前
7秒前
7秒前
浮游应助DY采纳,获得10
7秒前
轻松的冥王星完成签到,获得积分10
8秒前
ZZ完成签到,获得积分10
8秒前
8秒前
9秒前
ZSJ完成签到,获得积分10
9秒前
9秒前
蘑菇完成签到,获得积分20
9秒前
ylf完成签到,获得积分10
9秒前
10秒前
huiiii8发布了新的文献求助10
11秒前
11秒前
Starry完成签到 ,获得积分10
11秒前
酷炫的爆米花完成签到,获得积分10
11秒前
打打应助Zora采纳,获得10
11秒前
13秒前
科研通AI2S应助鬲木采纳,获得10
13秒前
pan发布了新的文献求助10
14秒前
铲妹发布了新的文献求助30
14秒前
15秒前
15秒前
ZZ发布了新的文献求助10
15秒前
坦率的刺猬完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
橙子完成签到,获得积分10
16秒前
寒江雪完成签到,获得积分0
17秒前
西啃完成签到,获得积分10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
La cage des méridiens. La littérature et l’art contemporain face à la globalisation 577
High-energy Combustion Agents of Organic Borohydrides 500
Practical Invisalign Mechanics: Crowding 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4956403
求助须知:如何正确求助?哪些是违规求助? 4218191
关于积分的说明 13128103
捐赠科研通 4000942
什么是DOI,文献DOI怎么找? 2189525
邀请新用户注册赠送积分活动 1204554
关于科研通互助平台的介绍 1116359