已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

GRDet: Rotated Object Detection in Remote Sensing Images Based on Gaussian Distribution

计算机视觉 计算机科学 目标检测 遥感 人工智能 高斯分布 对象(语法) 分布(数学) 地理 模式识别(心理学) 数学 物理 量子力学 数学分析
作者
Mengfan Cheng,Aimin Li,Deqi Liu,Dexu Yao,Xiaohan Liu
标识
DOI:10.1109/smc53992.2023.10394097
摘要

In recent years, many rotated object detection (ROD) methods have been proposed and have attracted wide attention in many fields. Most of them use anchor-based or Gaussian heatmaps for label assignment (LA), which cannot capture the shape and orientation characteristics of the rotated object and introduce a large number of hyper parameters. At the same time, most methods only add angle regression or use enclosing rectangles to realize ROD, which cannot express the object well. In this paper, we propose a new method for ROD, named GRDet, which is keypoint-based Anchor-free algorithm. GRDet can adaptively learn and represent an object with point sets, discarding the limitation of anchor on the size and orientation of the object. Specifically, we introduce a conversion function that is able to transform the point set into a rotated bounding box (RBB) for precise localization and classification. In addition, we propose a Gaussian-based dynamic label assignment (GDLA) strategy to realize the assignment of positive and negative (P&N) samples, which can adaptively learn according to the size and orientation characteristics of any rotated object. Moreover, we define an intersection over union (IoU) suitable for ROD, called Gaussian-IoU, which simulates the calculation of IoU by Gaussian distribution and solves the case that some points are not differentiable. Furthermore, we design a dynamic spatial quality constraint (DSQC) for RBB, which can dynamically evaluate the quality of the predicted RBB, and adaptively select high quality RBB. We use KFIoU loss and introduce Gaussian center loss to supervise the training of the network. Extensive experiments with DOTA dataset demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助怡然尔白采纳,获得10
1秒前
明亮的咖啡豆完成签到,获得积分10
2秒前
白学鑫完成签到,获得积分10
4秒前
6秒前
6秒前
bkagyin应助好久不见采纳,获得10
9秒前
12秒前
传奇3应助宇文思采纳,获得10
15秒前
守约完成签到,获得积分20
17秒前
17秒前
Persist6578完成签到 ,获得积分10
18秒前
初雪平寒发布了新的文献求助10
19秒前
hl完成签到 ,获得积分10
19秒前
LUUUUU发布了新的文献求助10
20秒前
Dasha完成签到,获得积分10
20秒前
22秒前
24秒前
wEric完成签到,获得积分20
24秒前
嗯哼举报我叫鲁鲁修求助涉嫌违规
25秒前
26秒前
27秒前
Persist完成签到 ,获得积分10
28秒前
28秒前
怡然尔白发布了新的文献求助10
28秒前
曾婉娟发布了新的文献求助10
30秒前
31秒前
ALICE发布了新的文献求助10
31秒前
194711发布了新的文献求助20
31秒前
Survivor完成签到,获得积分10
33秒前
宇文思发布了新的文献求助10
33秒前
35秒前
35秒前
希望天下0贩的0应助ALICE采纳,获得10
37秒前
小天应助曾婉娟采纳,获得10
39秒前
香蕉觅云应助曾婉娟采纳,获得10
39秒前
李秋静完成签到,获得积分10
41秒前
41秒前
cquank完成签到,获得积分10
42秒前
CLAIR完成签到,获得积分10
42秒前
圆圆酱完成签到 ,获得积分10
42秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463477
求助须知:如何正确求助?哪些是违规求助? 3056839
关于积分的说明 9054254
捐赠科研通 2746752
什么是DOI,文献DOI怎么找? 1507036
科研通“疑难数据库(出版商)”最低求助积分说明 696327
邀请新用户注册赠送积分活动 695883