Enhancement and Broadening of the Internal Electric Field of Hole-Transport-Layer-Free Perovskite Solar Cells by Quantum Dot Interface Modification

材料科学 量子点 钙钛矿(结构) 电场 图层(电子) 光电子学 空间电荷 载流子 工作职能 电子 耗尽区 凝聚态物理 纳米技术 半导体 量子力学 化学 物理 结晶学
作者
Wenhu Zhang,Bowen Zheng,Hairui Sun,Pin Lv,Xiaobing Liu
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (5): 6665-6673 被引量:2
标识
DOI:10.1021/acsami.3c17432
摘要

Hole-transport-layer-free perovskite solar cells have attracted strong interest due to their simple structure and low cost, but charge recombination is serious. Built-in electric field engineering is an intrinsic driver to facilitate charge separation transport and improve the efficiency of photovoltaic devices. However, the enhancement of the built-in electric field strength is often accompanied by the narrowing of the space charge region, which becomes a key constraint to the performance improvement of the device. Here, we propose an effective regulation method, the component engineering of quantum dots, to enhance the strength of the built-in electric field and broaden the range of space charge. By using all inorganic CsPbBrxI3–x (x = 0, 1, 2, 3) quantum dot interface modification to passivate the defects of MAPbI3 perovskite films, the regulation law of quantum dot components on the work function of perovskite films was revealed, and the mechanism of their influence on the internal electric field intensity and space charge region distribution was further clarified, thereby fundamentally solving the serious problem of charge recombination. As directly observed by electron-beam-induced current (EBIC), the introduction of CsPbBr2I quantum dots can effectively enhance the interfacial electric field intensity, widening the space charge region from 160 to 430 nm. Moreover, the efficiency of the hole-free transport layer perovskite solar cells modified by CsPbBr2I quantum dots was also significantly enhanced by 1.5 times. This is an important guideline for electric field modulation and efficiency improvement within photovoltaic devices with other simplified structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Joyj99发布了新的文献求助10
刚刚
蓦然回首完成签到,获得积分10
1秒前
悠悠发布了新的文献求助50
1秒前
1秒前
2秒前
Niko发布了新的文献求助20
3秒前
aa发布了新的文献求助10
4秒前
凌忆文完成签到 ,获得积分0
4秒前
阿峰发布了新的文献求助10
4秒前
故里完成签到,获得积分10
5秒前
皮卡丘完成签到,获得积分10
6秒前
chenhaiyi完成签到,获得积分20
6秒前
6秒前
哈哈哈完成签到 ,获得积分10
7秒前
天天快乐应助唾沫星子采纳,获得10
9秒前
牛马完成签到,获得积分20
9秒前
111发布了新的文献求助10
10秒前
11秒前
JuliaWang应助qoq采纳,获得10
11秒前
11秒前
12秒前
12秒前
天大地大大哥最大完成签到,获得积分10
12秒前
12秒前
不懈奋进应助aa采纳,获得30
12秒前
check003完成签到,获得积分10
13秒前
无花果应助Kuhaku采纳,获得20
13秒前
Micale完成签到,获得积分10
14秒前
15秒前
斯文败类应助WY采纳,获得10
15秒前
15秒前
今后应助Salvatore采纳,获得10
15秒前
都是发布了新的文献求助10
16秒前
17秒前
芋你呀完成签到,获得积分10
17秒前
Orange应助研友_38KR5Z采纳,获得10
17秒前
willow发布了新的文献求助10
18秒前
18秒前
谦让寄容发布了新的文献求助10
18秒前
刘广顺发布了新的文献求助10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3552334
求助须知:如何正确求助?哪些是违规求助? 3128516
关于积分的说明 9378234
捐赠科研通 2827604
什么是DOI,文献DOI怎么找? 1554491
邀请新用户注册赠送积分活动 725515
科研通“疑难数据库(出版商)”最低求助积分说明 714943