Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation

判别式 域适应 计算机科学 学习迁移 对抗制 人工智能 人工神经网络 适应(眼睛) 模式识别(心理学) 断层(地质) 领域(数学分析) 方位(导航) 图形 机器学习 理论计算机科学 数学 心理学 地质学 神经科学 地震学 分类器(UML) 数学分析
作者
Tang Tang,Zeyuan Liu,Chuanhang Qiu,Ming Chen,Ying Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065106-065106 被引量:3
标识
DOI:10.1088/1361-6501/ad3016
摘要

Abstract Graph neural networks (GNNs) have emerged as a forefront in deep learning, notably influencing research in mechanical fault diagnosis. Transfer learning, particularly through domain adaptation (DA) techniques, has found application in machinery fault diagnosis by training models under one working condition and deploying them under another. While efforts have been made to integrate GNNs with DA techniques to alleviate data distribution discrepancies by investigating the inter-sample relationships, challenges persist: reliance on K -nearest neighbor (KNN) for graph generation emphasizes close relationships, neglecting distant ones; batch processing limits real-time fault diagnosis; and transfer between different-sized bearings is nearly unexplored. To address these limitations, a novel framework for GNN-based domain adaptation in machinery fault diagnosis is proposed. Initially, a convolutional neural network extracts node embeddings from the continuous wavelet transform graph of raw vibration signals. Subsequently, a graph generation layer based on dilated KNN captures both close and distant sample relationships, addressing the long-range dependency issue. Two GNN blocks are then applied for inter-sample relationships investigation and further feature extraction with the outputs directed to a linear classifier during source domain pretraining. Following pretraining, adversarial discriminative domain adaptation is leveraged to mitigate domain distribution discrepancies. Additionally, a novel graph construction method that combines existing training samples with a new single sample is proposed, enabling fault prediction with single instances for real-time online fault diagnosis. Evaluation on datasets with varying working conditions and bearings of different sizes demonstrates the superior performance of our method to other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助able采纳,获得10
4秒前
咸鱼已躺平完成签到,获得积分10
6秒前
诡异的饭团完成签到,获得积分10
7秒前
anan完成签到 ,获得积分10
8秒前
常绝山完成签到 ,获得积分10
8秒前
幽默皮皮虾完成签到,获得积分10
8秒前
易止完成签到 ,获得积分10
8秒前
just完成签到,获得积分10
9秒前
11秒前
Disguise完成签到,获得积分10
11秒前
Young4399完成签到 ,获得积分10
11秒前
火星上宛秋完成签到 ,获得积分10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
szh123完成签到 ,获得积分10
13秒前
Luke发布了新的文献求助10
15秒前
mauve完成签到 ,获得积分10
15秒前
丽丽完成签到,获得积分10
19秒前
敏感笑槐完成签到 ,获得积分10
20秒前
Luke完成签到,获得积分10
20秒前
得鹿梦鱼完成签到,获得积分10
21秒前
嗝嗝完成签到,获得积分10
23秒前
Perry应助科研通管家采纳,获得30
23秒前
23秒前
今后应助水晶茶杯采纳,获得10
23秒前
peterlzb1234567完成签到,获得积分10
25秒前
natsu401完成签到 ,获得积分10
28秒前
mmddlj完成签到 ,获得积分10
28秒前
健康的雁凡完成签到,获得积分10
28秒前
稳重完成签到 ,获得积分10
30秒前
33秒前
haiqi完成签到,获得积分20
37秒前
白智妍发布了新的文献求助10
38秒前
王叮叮完成签到,获得积分10
39秒前
jeronimo完成签到,获得积分10
40秒前
40秒前
pcr163应助大橙子采纳,获得150
43秒前
李燕发布了新的文献求助10
45秒前
道友等等我完成签到,获得积分0
45秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022