Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation

判别式 域适应 计算机科学 学习迁移 对抗制 人工智能 人工神经网络 适应(眼睛) 模式识别(心理学) 断层(地质) 领域(数学分析) 方位(导航) 图形 机器学习 理论计算机科学 数学 心理学 地质学 神经科学 地震学 分类器(UML) 数学分析
作者
Tang Tang,Zeyuan Liu,Chuanhang Qiu,Ming Chen,Ying Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065106-065106
标识
DOI:10.1088/1361-6501/ad3016
摘要

Abstract Graph neural networks (GNNs) have emerged as a forefront in deep learning, notably influencing research in mechanical fault diagnosis. Transfer learning, particularly through domain adaptation (DA) techniques, has found application in machinery fault diagnosis by training models under one working condition and deploying them under another. While efforts have been made to integrate GNNs with DA techniques to alleviate data distribution discrepancies by investigating the inter-sample relationships, challenges persist: reliance on K -nearest neighbor (KNN) for graph generation emphasizes close relationships, neglecting distant ones; batch processing limits real-time fault diagnosis; and transfer between different-sized bearings is nearly unexplored. To address these limitations, a novel framework for GNN-based domain adaptation in machinery fault diagnosis is proposed. Initially, a convolutional neural network extracts node embeddings from the continuous wavelet transform graph of raw vibration signals. Subsequently, a graph generation layer based on dilated KNN captures both close and distant sample relationships, addressing the long-range dependency issue. Two GNN blocks are then applied for inter-sample relationships investigation and further feature extraction with the outputs directed to a linear classifier during source domain pretraining. Following pretraining, adversarial discriminative domain adaptation is leveraged to mitigate domain distribution discrepancies. Additionally, a novel graph construction method that combines existing training samples with a new single sample is proposed, enabling fault prediction with single instances for real-time online fault diagnosis. Evaluation on datasets with varying working conditions and bearings of different sizes demonstrates the superior performance of our method to other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深几许发布了新的文献求助10
1秒前
john完成签到,获得积分10
2秒前
柯柯发布了新的文献求助10
2秒前
wure10完成签到 ,获得积分10
3秒前
3秒前
4秒前
5秒前
Yu关闭了Yu文献求助
5秒前
5秒前
云风完成签到,获得积分10
6秒前
6秒前
黄院士发布了新的文献求助10
7秒前
7秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分20
8秒前
云风发布了新的文献求助10
9秒前
xunlei发布了新的文献求助10
9秒前
开心完成签到,获得积分10
9秒前
风中沂发布了新的文献求助10
10秒前
10秒前
敏敏子发布了新的文献求助10
10秒前
12秒前
13秒前
柯柯完成签到,获得积分20
14秒前
化学小学生完成签到,获得积分10
14秒前
LIN_YX发布了新的文献求助10
16秒前
17秒前
17秒前
胡子木完成签到,获得积分10
17秒前
Fa完成签到,获得积分10
19秒前
19秒前
OVERLXRD发布了新的文献求助10
20秒前
WHB完成签到,获得积分10
21秒前
Chasm完成签到 ,获得积分10
22秒前
Syj2468完成签到 ,获得积分10
22秒前
LIN_YX完成签到,获得积分10
24秒前
深几许完成签到,获得积分10
24秒前
Silver完成签到 ,获得积分10
24秒前
26秒前
ZHANG完成签到,获得积分10
26秒前
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3236198
求助须知:如何正确求助?哪些是违规求助? 2881908
关于积分的说明 8224330
捐赠科研通 2549909
什么是DOI,文献DOI怎么找? 1378738
科研通“疑难数据库(出版商)”最低求助积分说明 648465
邀请新用户注册赠送积分活动 623955