Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation

判别式 域适应 计算机科学 学习迁移 对抗制 人工智能 人工神经网络 适应(眼睛) 模式识别(心理学) 断层(地质) 领域(数学分析) 方位(导航) 图形 机器学习 理论计算机科学 数学 心理学 地质学 神经科学 地震学 分类器(UML) 数学分析
作者
Tang Tang,Zeyuan Liu,Chuanhang Qiu,Ming Chen,Ying Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065106-065106
标识
DOI:10.1088/1361-6501/ad3016
摘要

Abstract Graph neural networks (GNNs) have emerged as a forefront in deep learning, notably influencing research in mechanical fault diagnosis. Transfer learning, particularly through domain adaptation (DA) techniques, has found application in machinery fault diagnosis by training models under one working condition and deploying them under another. While efforts have been made to integrate GNNs with DA techniques to alleviate data distribution discrepancies by investigating the inter-sample relationships, challenges persist: reliance on K -nearest neighbor (KNN) for graph generation emphasizes close relationships, neglecting distant ones; batch processing limits real-time fault diagnosis; and transfer between different-sized bearings is nearly unexplored. To address these limitations, a novel framework for GNN-based domain adaptation in machinery fault diagnosis is proposed. Initially, a convolutional neural network extracts node embeddings from the continuous wavelet transform graph of raw vibration signals. Subsequently, a graph generation layer based on dilated KNN captures both close and distant sample relationships, addressing the long-range dependency issue. Two GNN blocks are then applied for inter-sample relationships investigation and further feature extraction with the outputs directed to a linear classifier during source domain pretraining. Following pretraining, adversarial discriminative domain adaptation is leveraged to mitigate domain distribution discrepancies. Additionally, a novel graph construction method that combines existing training samples with a new single sample is proposed, enabling fault prediction with single instances for real-time online fault diagnosis. Evaluation on datasets with varying working conditions and bearings of different sizes demonstrates the superior performance of our method to other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
安静幻枫应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得20
1秒前
1秒前
坚强亦丝应助科研通管家采纳,获得10
1秒前
yufanhui应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
kento应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
3秒前
小刘发布了新的文献求助10
3秒前
4秒前
5秒前
万能图书馆应助甘草三七采纳,获得10
6秒前
贫穷的塔姆完成签到,获得积分10
7秒前
Wtony完成签到 ,获得积分10
7秒前
河豚完成签到 ,获得积分10
7秒前
XXH发布了新的文献求助10
7秒前
APHOLY完成签到,获得积分20
9秒前
stark发布了新的文献求助30
9秒前
ggM发布了新的文献求助10
12秒前
刻苦惊蛰完成签到 ,获得积分10
12秒前
12秒前
Yangzx发布了新的文献求助10
13秒前
李玉琼发布了新的文献求助30
14秒前
XXH完成签到 ,获得积分10
14秒前
坚强的小蘑菇完成签到,获得积分10
17秒前
18秒前
yangr发布了新的文献求助10
20秒前
lili完成签到 ,获得积分10
20秒前
可靠的若完成签到,获得积分20
21秒前
李爱国应助火华采纳,获得10
23秒前
情怀应助成就芒果tv采纳,获得20
25秒前
26秒前
yangr完成签到,获得积分20
29秒前
小谢发布了新的文献求助10
29秒前
Jasper应助ggM采纳,获得10
30秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3053902
求助须知:如何正确求助?哪些是违规求助? 2711045
关于积分的说明 7424610
捐赠科研通 2355580
什么是DOI,文献DOI怎么找? 1247273
科研通“疑难数据库(出版商)”最低求助积分说明 606339
版权声明 596012