Transfer Learning for Bearing Fault Diagnosis based on Graph Neural Network with Dilated KNN and Adversarial Discriminative Domain Adaptation

判别式 域适应 计算机科学 学习迁移 对抗制 人工智能 人工神经网络 适应(眼睛) 模式识别(心理学) 断层(地质) 领域(数学分析) 方位(导航) 图形 机器学习 理论计算机科学 数学 心理学 地质学 神经科学 地震学 分类器(UML) 数学分析
作者
Tang Tang,Zeyuan Liu,Chuanhang Qiu,Ming Chen,Ying Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (6): 065106-065106 被引量:4
标识
DOI:10.1088/1361-6501/ad3016
摘要

Abstract Graph neural networks (GNNs) have emerged as a forefront in deep learning, notably influencing research in mechanical fault diagnosis. Transfer learning, particularly through domain adaptation (DA) techniques, has found application in machinery fault diagnosis by training models under one working condition and deploying them under another. While efforts have been made to integrate GNNs with DA techniques to alleviate data distribution discrepancies by investigating the inter-sample relationships, challenges persist: reliance on K -nearest neighbor (KNN) for graph generation emphasizes close relationships, neglecting distant ones; batch processing limits real-time fault diagnosis; and transfer between different-sized bearings is nearly unexplored. To address these limitations, a novel framework for GNN-based domain adaptation in machinery fault diagnosis is proposed. Initially, a convolutional neural network extracts node embeddings from the continuous wavelet transform graph of raw vibration signals. Subsequently, a graph generation layer based on dilated KNN captures both close and distant sample relationships, addressing the long-range dependency issue. Two GNN blocks are then applied for inter-sample relationships investigation and further feature extraction with the outputs directed to a linear classifier during source domain pretraining. Following pretraining, adversarial discriminative domain adaptation is leveraged to mitigate domain distribution discrepancies. Additionally, a novel graph construction method that combines existing training samples with a new single sample is proposed, enabling fault prediction with single instances for real-time online fault diagnosis. Evaluation on datasets with varying working conditions and bearings of different sizes demonstrates the superior performance of our method to other comparison methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助TiAmo采纳,获得10
刚刚
淡然柚子发布了新的文献求助10
1秒前
1秒前
星星完成签到,获得积分10
3秒前
追风少年完成签到 ,获得积分10
3秒前
Simpson完成签到 ,获得积分0
3秒前
kks569完成签到,获得积分10
3秒前
二十三月之夜完成签到,获得积分10
3秒前
TanXu发布了新的文献求助30
4秒前
xiao完成签到,获得积分20
4秒前
5秒前
Kelly完成签到,获得积分10
5秒前
山鲁佐德发布了新的文献求助10
5秒前
呼噜呼噜小完成签到,获得积分10
5秒前
要减肥的chao完成签到,获得积分10
6秒前
leishenwang完成签到,获得积分10
6秒前
若安在完成签到,获得积分10
7秒前
醋酸柠檬完成签到,获得积分10
7秒前
safa完成签到,获得积分10
7秒前
活泼红牛完成签到,获得积分10
8秒前
Zhou完成签到,获得积分10
8秒前
麦葭完成签到,获得积分10
9秒前
democienceek完成签到,获得积分10
9秒前
sci2025opt完成签到 ,获得积分10
9秒前
花城完成签到,获得积分10
10秒前
桃花不换酒完成签到,获得积分10
10秒前
qq完成签到 ,获得积分10
10秒前
小爱完成签到,获得积分10
10秒前
大大大大宝凌完成签到,获得积分10
11秒前
11秒前
蜜桃四季春完成签到,获得积分10
11秒前
11秒前
jiachj发布了新的文献求助10
12秒前
donnolea完成签到 ,获得积分10
12秒前
善良的橄榄色芭蕉鲨鱼完成签到,获得积分10
12秒前
felix完成签到,获得积分10
13秒前
小小完成签到,获得积分10
13秒前
Junjie完成签到,获得积分10
14秒前
在水一方应助emm采纳,获得10
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5118495
求助须知:如何正确求助?哪些是违规求助? 4324442
关于积分的说明 13472092
捐赠科研通 4157447
什么是DOI,文献DOI怎么找? 2278444
邀请新用户注册赠送积分活动 1280187
关于科研通互助平台的介绍 1218907