基准标记
荧光
细胞
计算生物学
生物
计算机科学
物理
人工智能
遗传学
光学
作者
Morgan Gee,Kaiser Atai,Hilary A. Coller,Todd O. Yeates,Roger Castells‐Graells
标识
DOI:10.1101/2024.02.28.582585
摘要
ABSTRACT Understanding how proteins function within their cellular environments is essential for cellular biology and biomedical research. However, current imaging techniques exhibit limitations, particularly in the study of small complexes and individual proteins within cells. Previously, protein cages have been employed as imaging scaffolds to study purified small proteins using cryo-electron microscopy (cryo-EM). Here we demonstrate an approach to deliver designed protein cages – endowed with fluorescence and targeted binding properties – into cells, thereby serving as fiducial markers for cellular imaging. We used protein cages with anti-GFP DARPin domains to target a mitochondrial protein (MFN1) expressed in mammalian cells, which was genetically fused to GFP. We demonstrate that the protein cages can penetrate cells, are directed to specific subcellular locations, and are detectable with confocal microscopy. This innovation represents a milestone in developing tools for in-depth cellular exploration, especially in conjunction with methods such as cryo-correlative light and electron microscopy (cryo-CLEM).
科研通智能强力驱动
Strongly Powered by AbleSci AI