Evaluating Machine Learning-Based Approaches in Land Subsidence Susceptibility Mapping

下沉 计算机科学 地质学 地貌学 构造盆地
作者
Elham Hosseinzadeh,Sara Anamaghi,Massoud Behboudian,Zahra Kalantari
出处
期刊:Land [MDPI AG]
卷期号:13 (3): 322-322
标识
DOI:10.3390/land13030322
摘要

Land subsidence (LS) due to natural and human-driven forces (e.g., earthquakes and overexploitation of groundwater) has detrimental and irreversible impacts on the environmental, economic, and social aspects of human life. Thus, LS hazard mapping, monitoring, and prediction are important for scientists and decision-makers. This study evaluated the performance of seven machine learning approaches (MLAs), comprising six classification approaches and one regression approach, namely (1) classification and regression trees (CARTs), (2) boosted regression tree (BRT), (3) Bayesian linear regression (BLR), (4) support vector machine (SVM), (5) random forest (RF), (6) logistic regression (LogR), and (7) multiple linear regression (MLR), in generating LS susceptibility maps and predicting LS in two case studies (Semnan Plain and Kashmar Plain in Iran) with varying intrinsic characteristics and available data points. Multiple input variables (slope, aspect, groundwater drawdown, distance from the river, distance from the fault, lithology, land use, topographic wetness index (TWI), and normalized difference vegetation index (NDVI)), were used as predictors. BRT outperformed the other classification approaches in both case studies, with accuracy rates of 75% and 74% for Semnan and Kashmar plains, respectively. The MLR approach yielded a Mean Square Error (MSE) of 0.25 for Semnan plain and 0.32 for Kashmar plain. According to the BRT approach, the variables playing the most significant role in LS in Semnan Plain were groundwater drawdown (20.31%), distance from the river (17.11%), land use (14.98%), NDVI (12.75%), and lithology (11.93%). Moreover, the three most important factors in LS in Kashmar Plain were groundwater drawdown (35.31%), distance from the river (23.1%), and land use (12.98%). The results suggest that the BRT method is not significantly affected by data set size, but increasing the number of training set data points in MLR results in a decreased error rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
投机倒把完成签到,获得积分10
刚刚
充电宝应助研友_7Ze94Z采纳,获得10
1秒前
初级小白发布了新的文献求助10
1秒前
天天快乐应助weiwei采纳,获得10
2秒前
璐璐发布了新的文献求助10
2秒前
ding应助浪费青春传奇采纳,获得10
3秒前
Xv发布了新的文献求助10
3秒前
栗子吃饱啦应助majm采纳,获得10
4秒前
5秒前
一年发3篇JACS完成签到,获得积分10
7秒前
8秒前
科研通AI2S应助想退学采纳,获得10
8秒前
8秒前
狂野的小露喳完成签到,获得积分10
10秒前
星星火完成签到,获得积分10
10秒前
wrzzz完成签到,获得积分10
10秒前
10秒前
10秒前
佩琪发布了新的文献求助10
12秒前
所所应助橙子采纳,获得10
12秒前
Menand发布了新的文献求助30
12秒前
花花发布了新的文献求助10
13秒前
13秒前
研友_7Ze94Z发布了新的文献求助10
14秒前
14秒前
XH发布了新的文献求助10
14秒前
14秒前
15秒前
tzb发布了新的文献求助10
15秒前
王不羁发布了新的文献求助20
16秒前
Nitric_Oxide应助yk123采纳,获得100
17秒前
18秒前
19秒前
XH完成签到,获得积分10
19秒前
愤怒的网络完成签到,获得积分10
20秒前
TENG完成签到,获得积分20
20秒前
Catalysis123完成签到,获得积分10
20秒前
cmc12314发布了新的文献求助10
21秒前
crillzlol完成签到,获得积分10
21秒前
丘比特应助顺心的海菡采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125050
求助须知:如何正确求助?哪些是违规求助? 2775348
关于积分的说明 7726300
捐赠科研通 2430919
什么是DOI,文献DOI怎么找? 1291479
科研通“疑难数据库(出版商)”最低求助积分说明 622162
版权声明 600344