Homeostatic Solid Solution Reaction in Phosphate Cathode: Breaking High‐Voltage Barrier to Achieve High Energy Density and Long Life of Sodium‐Ion Batteries

氧化还原 阴极 材料科学 电化学 电子转移 化学工程 电池(电) 密度泛函理论 快离子导体 化学物理 储能 电解质 纳米技术 电极 化学 物理化学 热力学 计算化学 功率(物理) 物理 冶金 工程类
作者
Zhen‐Yi Gu,Xinxin Zhao,Kai Li,Junming Cao,Xiao‐Tong Wang,Jin‐Zhi Guo,Han‐Hao Liu,Shuo‐Hang Zheng,Dai‐Huo Liu,Hongyue Wu,Xing‐Long Wu
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (23): e2400690-e2400690 被引量:58
标识
DOI:10.1002/adma.202400690
摘要

Abstract The stable phase transformation during electrochemical progress drives extensive research on vanadium‐based polyanions in sodium‐ion batteries (SIBs), especially Na 3 V 2 (PO 4 ) 3 (NVP). And the electron transfer between V 3+/4+ redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V 4+/5+ redox couple is still in hard‐to‐access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities. In this work, the multilevel redox in NVP frame (MLNP) alters reaction pathway to undergo homeostatic solid solution process and breaks the high barrier of V 4+/5+ at high voltage, taking by progressive transition metal (V, Fe, Ti, and Cr) redox couple. The diversified reaction paths across diffusion barriers could be realized by distinctive release/uptake of inactive Na1 site, confirmed by the calculations of density functional theory. Thereby its volume change is merely 1.73% during the multielectron‐transfer process (≈2.77 electrons). MLNP cathode could achieve an impressive energy density of 440 Wh kg −1 , driving the leading development of MLNP among other NASICON structure SIBs. The integration of multiple redox couples with low strain modulates the reaction pathway effectively and will open a new avenue for fabricating high‐performance cathodes in SIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lihuanmoon发布了新的文献求助10
2秒前
2秒前
dundun发布了新的文献求助30
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
小魏完成签到,获得积分10
4秒前
4秒前
5秒前
紫气东来应助DAYTOY采纳,获得10
5秒前
hygge发布了新的文献求助10
6秒前
SUNINE完成签到,获得积分10
7秒前
纯情的凡双完成签到 ,获得积分10
7秒前
噗噗发布了新的文献求助10
7秒前
TCXXS完成签到 ,获得积分10
8秒前
8秒前
酷波er应助xiaoweiba采纳,获得10
9秒前
10秒前
10秒前
ding应助D&L采纳,获得10
10秒前
刘旭阳完成签到,获得积分10
10秒前
李柏桐发布了新的文献求助10
11秒前
11秒前
Tingting发布了新的文献求助10
11秒前
ange完成签到 ,获得积分10
11秒前
纯情的凡双关注了科研通微信公众号
12秒前
鸡爪发布了新的文献求助10
13秒前
复杂焦完成签到,获得积分10
13秒前
田様应助www采纳,获得10
13秒前
西蜀小吏发布了新的文献求助10
14秒前
15秒前
Waris发布了新的文献求助30
15秒前
15秒前
15秒前
花卷发布了新的文献求助10
16秒前
16秒前
16秒前
ange关注了科研通微信公众号
16秒前
16秒前
所所应助哎哎采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648490
求助须知:如何正确求助?哪些是违规求助? 4775560
关于积分的说明 15044364
捐赠科研通 4807469
什么是DOI,文献DOI怎么找? 2570809
邀请新用户注册赠送积分活动 1527552
关于科研通互助平台的介绍 1486499