氧化还原
阴极
材料科学
电化学
电子转移
钒
化学工程
电池(电)
密度泛函理论
快离子导体
化学物理
储能
电解质
纳米技术
电极
化学
物理化学
热力学
计算化学
功率(物理)
物理
冶金
工程类
作者
Zhen‐Yi Gu,Xinxin Zhao,Kai Li,Junming Cao,Xiao‐Tong Wang,Jin‐Zhi Guo,Han‐Hao Liu,Shuo‐Hang Zheng,Dai‐Huo Liu,Hong‐Yue Wu,Xing‐Long Wu
标识
DOI:10.1002/adma.202400690
摘要
Abstract The stable phase transformation during electrochemical progress drives extensive research on vanadium‐based polyanions in sodium‐ion batteries (SIBs), especially Na 3 V 2 (PO 4 ) 3 (NVP). And the electron transfer between V 3+/4+ redox couple in NVP could be generally achieved, owing to the confined crystal variation during battery service. However, the more favorable V 4+/5+ redox couple is still in hard‐to‐access situation due to the high barrier and further brings about the corresponding inefficiency in energy densities. In this work, the multilevel redox in NVP frame (MLNP) alters reaction pathway to undergo homeostatic solid solution process and breaks the high barrier of V 4+/5+ at high voltage, taking by progressive transition metal (V, Fe, Ti, and Cr) redox couple. The diversified reaction paths across diffusion barriers could be realized by distinctive release/uptake of inactive Na1 site, confirmed by the calculations of density functional theory. Thereby its volume change is merely 1.73% during the multielectron‐transfer process (≈2.77 electrons). MLNP cathode could achieve an impressive energy density of 440 Wh kg −1 , driving the leading development of MLNP among other NASICON structure SIBs. The integration of multiple redox couples with low strain modulates the reaction pathway effectively and will open a new avenue for fabricating high‐performance cathodes in SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI