Localization in Underwater Acoustic IoT Networks: Dealing With Perturbed Anchors and Stratification

计算机科学 水下 分层(种子) 水声通信 物联网 水声学 地质学 计算机安全 海洋学 种子休眠 植物 发芽 休眠 生物
作者
Xiaojun Mei,Dezhi Han,Nasir Saeed,Huafeng Wu,Bing Han,Kuan‐Ching Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17757-17769 被引量:7
标识
DOI:10.1109/jiot.2024.3360245
摘要

Underwater acoustic Internet of Things Networks (UAIoTNs) play a crucial role in oceanographic and environmental monitoring, necessitating precise localization for optimal functionality. However, the underwater setting introduces significant challenges, encompassing the stratification effect arising from underwater heterogeneity, uncertainty in anchor positions due to currents, and variations in the signal transmission environment. These factors collectively impede the accurate estimation of location. Consequently, this paper addresses these challenges by analyzing and deriving a closed-form solution using a time-of-arrival (TOA)-based technique for 3D localization in UAIoTNs. The investigation establishes an underwater stratified propagation model, drawing inspiration from ray tracing theory and Snell's law. Employing the Cramér-Rao lower bound (CRLB) framework, we explore scenarios both with and without considering perturbed anchors, utilizing the Banachiewicz-Schur theorem. To quantify the impact of the stratification effect and perturbed anchors on CRLB and mean square error (MSE), we further analyze and derive an MSE expression, employing Taylor-series linearization. Building on our analysis of the detrimental effects of stratification and inaccurate anchors, we introduce a multiple-weighted least squares (MWLS) algorithm to alleviate potential performance losses. This approach integrates a matrix operator in the update step, eliminating variable dependencies and resulting in a closed-form solution that circumvents the need for iterative processes. Our simulation results validate our analytical findings and demonstrate the effectiveness of the proposed method, showcasing improved localization accuracy across various scenarios when compared to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
结实的蘑菇完成签到 ,获得积分10
1秒前
Anyemzl完成签到,获得积分10
1秒前
2秒前
4秒前
可可完成签到 ,获得积分10
4秒前
yar应助呜呜呜采纳,获得10
4秒前
科目三应助jitianxing采纳,获得10
4秒前
天天快乐应助眼睛大花生采纳,获得10
5秒前
Lynn完成签到 ,获得积分10
5秒前
胡萝卜棒棒糖完成签到,获得积分10
5秒前
哭泣从菡完成签到,获得积分20
5秒前
小王好饿完成签到 ,获得积分10
6秒前
不打游戏_发布了新的文献求助10
6秒前
7秒前
oneming完成签到,获得积分10
7秒前
7秒前
8秒前
我是老大应助东东呀采纳,获得10
8秒前
10秒前
Lucas应助zlk采纳,获得10
11秒前
Orange应助QWE采纳,获得10
12秒前
7U发布了新的文献求助10
13秒前
贪玩的元彤完成签到,获得积分10
13秒前
耗材发布了新的文献求助10
13秒前
玟翾发布了新的文献求助10
14秒前
cookie完成签到,获得积分10
15秒前
16秒前
MaRin完成签到,获得积分20
16秒前
Lucas应助jx314采纳,获得10
17秒前
18秒前
MaRin发布了新的文献求助10
19秒前
20秒前
777完成签到 ,获得积分10
21秒前
21秒前
7U完成签到,获得积分10
22秒前
ycf完成签到,获得积分10
22秒前
zihanwang应助天真的迎天采纳,获得10
24秒前
25秒前
醉熏的鑫发布了新的文献求助10
26秒前
无花果应助ll采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998622
求助须知:如何正确求助?哪些是违规求助? 3538115
关于积分的说明 11273407
捐赠科研通 3277045
什么是DOI,文献DOI怎么找? 1807368
邀请新用户注册赠送积分活动 883854
科研通“疑难数据库(出版商)”最低求助积分说明 810070