Localization in Underwater Acoustic IoT Networks: Dealing With Perturbed Anchors and Stratification

计算机科学 水下 分层(种子) 水声通信 物联网 水声学 地质学 计算机安全 海洋学 种子休眠 植物 发芽 休眠 生物
作者
Xiaojun Mei,Dezhi Han,Nasir Saeed,Huafeng Wu,Bing Han,Kuan‐Ching Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (10): 17757-17769 被引量:7
标识
DOI:10.1109/jiot.2024.3360245
摘要

Underwater acoustic Internet of Things Networks (UAIoTNs) play a crucial role in oceanographic and environmental monitoring, necessitating precise localization for optimal functionality. However, the underwater setting introduces significant challenges, encompassing the stratification effect arising from underwater heterogeneity, uncertainty in anchor positions due to currents, and variations in the signal transmission environment. These factors collectively impede the accurate estimation of location. Consequently, this paper addresses these challenges by analyzing and deriving a closed-form solution using a time-of-arrival (TOA)-based technique for 3D localization in UAIoTNs. The investigation establishes an underwater stratified propagation model, drawing inspiration from ray tracing theory and Snell's law. Employing the Cramér-Rao lower bound (CRLB) framework, we explore scenarios both with and without considering perturbed anchors, utilizing the Banachiewicz-Schur theorem. To quantify the impact of the stratification effect and perturbed anchors on CRLB and mean square error (MSE), we further analyze and derive an MSE expression, employing Taylor-series linearization. Building on our analysis of the detrimental effects of stratification and inaccurate anchors, we introduce a multiple-weighted least squares (MWLS) algorithm to alleviate potential performance losses. This approach integrates a matrix operator in the update step, eliminating variable dependencies and resulting in a closed-form solution that circumvents the need for iterative processes. Our simulation results validate our analytical findings and demonstrate the effectiveness of the proposed method, showcasing improved localization accuracy across various scenarios when compared to state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助xiaofeizhu采纳,获得10
1秒前
1秒前
1秒前
Na完成签到,获得积分10
2秒前
3秒前
shaojiaikeyan完成签到,获得积分10
3秒前
Mao发布了新的文献求助10
5秒前
阿峰发布了新的文献求助10
5秒前
6秒前
Lize完成签到,获得积分10
6秒前
希与发布了新的文献求助10
6秒前
nn发布了新的文献求助10
6秒前
领导范儿应助1820采纳,获得10
7秒前
7秒前
sasa发布了新的文献求助10
7秒前
8秒前
柒玉染完成签到,获得积分10
9秒前
呜呜完成签到,获得积分10
9秒前
9秒前
风清扬发布了新的文献求助10
10秒前
10秒前
CipherSage应助Robin采纳,获得10
10秒前
我爱学习完成签到,获得积分10
11秒前
11秒前
11秒前
木木木完成签到,获得积分10
12秒前
sy完成签到,获得积分10
12秒前
科研通AI6应助子车凡采纳,获得10
12秒前
痴情的白易完成签到 ,获得积分20
13秒前
解解闷发布了新的文献求助10
13秒前
fufufu123完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
微笑的觅夏完成签到 ,获得积分10
14秒前
锅包又完成签到 ,获得积分10
15秒前
李健应助ZZQQ采纳,获得10
15秒前
刘丰铭发布了新的文献求助10
15秒前
15秒前
15秒前
柒玉染发布了新的文献求助10
16秒前
kqkqkqkqkq完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809