CoCoNat: A Deep Learning–Based Tool for the Prediction of Coiled-coil Domains in Protein Sequences

可执行文件 计算机科学 注释 螺旋线圈 鉴定(生物学) Web服务器 可视化 人工智能 上传 任务(项目管理) 模式识别(心理学) 数据挖掘 程序设计语言 生物 互联网 操作系统 植物 经济 管理 生物化学
作者
Matteo Manfredi,Castrense Savojardo,Pier Luigi Martelli,Rita Casadio
出处
期刊:Bio-protocol [Bio-Protocol]
卷期号:14 (4)
标识
DOI:10.21769/bioprotoc.4935
摘要

Coiled-coil domains (CCDs) are structural motifs observed in proteins in all organisms that perform several crucial functions. The computational identification of CCD segments over a protein sequence is of great importance for its functional characterization. This task can essentially be divided into three separate steps: the detection of segment boundaries, the annotation of the heptad repeat pattern along the segment, and the classification of its oligomerization state. Several methods have been proposed over the years addressing one or more of these predictive steps. In this protocol, we illustrate how to make use of CoCoNat, a novel approach based on protein language models, to characterize CCDs. CoCoNat is, at its release (August 2023), the state of the art for CCD detection. The web server allows users to submit input protein sequences and visualize the predicted domains after a few minutes. Optionally, precomputed segments can be provided to the model, which will predict the oligomerization state for each of them. CoCoNat can be easily integrated into biological pipelines by downloading the standalone version, which provides a single executable script to produce the output. Key features • Web server for the prediction of coiled-coil segments from a protein sequence. • Three different predictions from a single tool (segment position, heptad repeat annotation, oligomerization state). • Possibility to visualize the results online or to download the predictions in different formats for further processing. • Easy integration in automated pipelines with the local version of the tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助dadasigua采纳,获得10
1秒前
唠叨的曼雁完成签到,获得积分10
2秒前
zxin完成签到,获得积分10
2秒前
Res_M发布了新的文献求助10
3秒前
Ava应助sanling采纳,获得60
4秒前
整齐新儿发布了新的文献求助10
7秒前
9秒前
10秒前
Kitty完成签到,获得积分10
11秒前
orixero应助整齐新儿采纳,获得10
11秒前
天天快乐应助整齐新儿采纳,获得10
11秒前
12秒前
12秒前
14秒前
14秒前
zhangzhi发布了新的文献求助10
14秒前
花花完成签到,获得积分20
15秒前
seedling发布了新的文献求助10
15秒前
16秒前
16秒前
秘书发布了新的文献求助10
16秒前
gaiaaxy发布了新的文献求助10
17秒前
花凉完成签到,获得积分10
17秒前
慕青应助玖月采纳,获得10
18秒前
lilith发布了新的文献求助10
18秒前
花凉发布了新的文献求助10
20秒前
20秒前
聚甲烯吡络烷酮完成签到 ,获得积分10
21秒前
卡皮巴拉发布了新的文献求助10
22秒前
王秋婷发布了新的文献求助10
22秒前
叶绿体机智完成签到,获得积分10
24秒前
shelly发布了新的文献求助10
25秒前
26秒前
28秒前
小二郎应助naonao采纳,获得10
28秒前
YWang完成签到,获得积分10
29秒前
胡图图完成签到,获得积分10
33秒前
咩咩咩发布了新的文献求助10
33秒前
汉堡包应助大力沛萍采纳,获得10
34秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605