A Dual Inertial Measurement Unit System for Classifying Standard Overhead Drill Movements in Elite Women’s Water Polo

水球 投掷 惯性测量装置 架空(工程) 计算机科学 计量单位 演习 跨步 模拟 人工智能 工程类 物理医学与康复 医学 计算机安全 物理 操作系统 机械工程 量子力学
作者
MARGUERITE H. KING,Amy Lewis,Kate Watson,Nathalia Costa,Bill Vicenzino
出处
期刊:Medicine and Science in Sports and Exercise [Ovid Technologies (Wolters Kluwer)]
卷期号:56 (5): 999-1007
标识
DOI:10.1249/mss.0000000000003369
摘要

ABSTRACT Introduction Water polo upper limb external load monitoring cannot be currently measured accurately because of technological and methodological challenges. This is problematic as large fluctuations in overhead movement volume and intensity may affect performance and alter injury risk. Inertial measurement units (IMU) and machine learning techniques have been shown to accurately classify overhead movements in other sports. We investigated the model accuracy and class precision, sensitivity, and specificity of IMU and machine learning techniques to classify standard overhead drill movements in elite women’s water polo. Methods Ten women’s water polo players performed standard drills of swimming, blocking, low-intensity throwing and high-intensity throwing under training conditions. Athletes wore two IMU: one on the upper back and the other on the distal forearm. Each movement was videoed and coded to a standard overhead drill movement. IMU and coded video data were merged to verify the IMU-detected activity classification of each movement to that of the video. Data were partitioned into a training and a test set and used to form a decision tree algorithm. Model accuracy and class precision, sensitivity, and specificity were assessed. Results IMU resultant acceleration and angular velocity values displayed drill-specific values. A total of 194 activities were identified by the model in the test set, with 8 activities being incorrectly classified. Model accuracy was 95.88%. Percentage class precision, sensitivity, and specificity were as follows: blocking (96.15, 86.21, 99.39), high-intensity throwing (100, 100, 100), low-intensity throwing (93.48, 93.48, 97.97), and swimming (94.81, 98.65, 96.67). Conclusions IMU and machine learning techniques can accurately classify standard overhead drill movements in elite women’s water polo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研打工人采纳,获得30
刚刚
Owen应助mia采纳,获得10
1秒前
才哥发布了新的文献求助10
1秒前
1秒前
SciGPT应助ddm采纳,获得10
1秒前
佳丽发布了新的文献求助10
2秒前
NexusExplorer应助可萨利亚采纳,获得10
2秒前
2秒前
2秒前
英俊的铭应助guagua采纳,获得10
3秒前
小马甲应助七七采纳,获得10
3秒前
3秒前
Kin_L发布了新的文献求助20
4秒前
甜甜玫瑰发布了新的文献求助10
4秒前
4秒前
要减肥白云完成签到,获得积分10
4秒前
赘婿应助CHAOSMS采纳,获得10
5秒前
岁岁安发布了新的文献求助30
7秒前
Orange应助哈哈采纳,获得10
8秒前
大地发布了新的文献求助10
8秒前
9秒前
汉堡包应助小燚采纳,获得10
9秒前
ben0258发布了新的文献求助20
9秒前
delect发布了新的文献求助10
9秒前
田様应助AteeqBaloch采纳,获得10
10秒前
神勇中道完成签到,获得积分10
10秒前
10秒前
田静然发布了新的文献求助10
10秒前
asdfghjkl发布了新的文献求助30
12秒前
迷人芙蓉完成签到,获得积分10
12秒前
zhangyuheng发布了新的文献求助10
12秒前
12秒前
研友_VZG7GZ应助无私的凛采纳,获得10
12秒前
科目三应助Desamin采纳,获得10
13秒前
Felix发布了新的文献求助10
13秒前
13秒前
景自端发布了新的文献求助10
13秒前
小杜小杜发布了新的文献求助10
13秒前
瑞仔完成签到,获得积分10
14秒前
从容猫咪完成签到,获得积分20
14秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148940
求助须知:如何正确求助?哪些是违规求助? 2800005
关于积分的说明 7837927
捐赠科研通 2457512
什么是DOI,文献DOI怎么找? 1307891
科研通“疑难数据库(出版商)”最低求助积分说明 628322
版权声明 601685