A Dual Inertial Measurement Unit System for Classifying Standard Overhead Drill Movements in Elite Women’s Water Polo

水球 投掷 惯性测量装置 架空(工程) 计算机科学 计量单位 演习 跨步 模拟 人工智能 工程类 物理医学与康复 医学 计算机安全 物理 操作系统 机械工程 量子力学
作者
MARGUERITE H. KING,Amy Lewis,Kate Watson,Nathalia Costa,Bill Vicenzino
出处
期刊:Medicine and Science in Sports and Exercise [Lippincott Williams & Wilkins]
卷期号:56 (5): 999-1007
标识
DOI:10.1249/mss.0000000000003369
摘要

ABSTRACT Introduction Water polo upper limb external load monitoring cannot be currently measured accurately because of technological and methodological challenges. This is problematic as large fluctuations in overhead movement volume and intensity may affect performance and alter injury risk. Inertial measurement units (IMU) and machine learning techniques have been shown to accurately classify overhead movements in other sports. We investigated the model accuracy and class precision, sensitivity, and specificity of IMU and machine learning techniques to classify standard overhead drill movements in elite women’s water polo. Methods Ten women’s water polo players performed standard drills of swimming, blocking, low-intensity throwing and high-intensity throwing under training conditions. Athletes wore two IMU: one on the upper back and the other on the distal forearm. Each movement was videoed and coded to a standard overhead drill movement. IMU and coded video data were merged to verify the IMU-detected activity classification of each movement to that of the video. Data were partitioned into a training and a test set and used to form a decision tree algorithm. Model accuracy and class precision, sensitivity, and specificity were assessed. Results IMU resultant acceleration and angular velocity values displayed drill-specific values. A total of 194 activities were identified by the model in the test set, with 8 activities being incorrectly classified. Model accuracy was 95.88%. Percentage class precision, sensitivity, and specificity were as follows: blocking (96.15, 86.21, 99.39), high-intensity throwing (100, 100, 100), low-intensity throwing (93.48, 93.48, 97.97), and swimming (94.81, 98.65, 96.67). Conclusions IMU and machine learning techniques can accurately classify standard overhead drill movements in elite women’s water polo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司空踏歌完成签到,获得积分10
刚刚
Druid发布了新的文献求助10
1秒前
3秒前
Jenny发布了新的文献求助10
3秒前
3秒前
3秒前
充电宝应助素龙采纳,获得10
4秒前
白申梦发布了新的文献求助10
4秒前
星辰发布了新的文献求助10
5秒前
Whim应助Yang采纳,获得30
5秒前
TTLi完成签到,获得积分10
6秒前
6秒前
李爱国应助like采纳,获得10
6秒前
wenjing完成签到,获得积分10
6秒前
lemon完成签到,获得积分10
6秒前
6秒前
kourosz完成签到,获得积分10
7秒前
沈绘绘发布了新的文献求助10
7秒前
沈绘绘发布了新的文献求助10
8秒前
小流星完成签到,获得积分10
8秒前
沈绘绘发布了新的文献求助10
8秒前
沈绘绘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
幸福果汁完成签到,获得积分10
8秒前
牙齿伯伯完成签到,获得积分20
8秒前
沈绘绘发布了新的文献求助10
9秒前
沈绘绘发布了新的文献求助10
9秒前
沈绘绘发布了新的文献求助10
9秒前
沈绘绘发布了新的文献求助10
9秒前
10秒前
风趣心情完成签到,获得积分10
12秒前
12秒前
Hello应助喵喵采纳,获得10
13秒前
14秒前
14秒前
walden完成签到,获得积分10
14秒前
科目三应助7z采纳,获得10
14秒前
15秒前
韩玉完成签到,获得积分10
16秒前
素龙发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089