Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114224-114224 被引量:12
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助特来骑采纳,获得10
1秒前
3秒前
Lucas应助谷粱靖采纳,获得30
4秒前
6秒前
7秒前
7秒前
星辰大海应助alim采纳,获得10
7秒前
852应助meijuan1210采纳,获得10
8秒前
8秒前
酷波er应助cloud采纳,获得10
9秒前
10秒前
dingyi601发布了新的文献求助10
10秒前
10秒前
11秒前
余乐驹发布了新的文献求助30
12秒前
皓月星辰完成签到,获得积分10
14秒前
清脆愫完成签到 ,获得积分10
14秒前
14秒前
Duolalala完成签到,获得积分20
15秒前
瘦瘦的一江完成签到 ,获得积分10
15秒前
英俊的铭应助某某采纳,获得10
16秒前
乐乐应助鲁一平采纳,获得10
19秒前
zzer发布了新的文献求助20
19秒前
dingyi601完成签到,获得积分10
20秒前
22秒前
23秒前
冯冯冯发布了新的文献求助10
24秒前
Akim应助周周周采纳,获得10
25秒前
26秒前
劣根发布了新的文献求助10
26秒前
先森发布了新的文献求助10
27秒前
迟迟发布了新的文献求助10
28秒前
在郑州发布了新的文献求助10
30秒前
Dreamy发布了新的文献求助30
30秒前
艺阳发布了新的文献求助10
31秒前
123完成签到 ,获得积分10
31秒前
奋斗含巧发布了新的文献求助10
33秒前
orixero应助先森采纳,获得10
34秒前
35秒前
小蘑菇应助guoduan采纳,获得10
35秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Microlepidoptera Palaearctica, Volumes 1 and 3 - 13 (12-Volume Set) [German] 1122
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufen 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 700
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3093589
求助须知:如何正确求助?哪些是违规求助? 2745564
关于积分的说明 7586157
捐赠科研通 2396871
什么是DOI,文献DOI怎么找? 1271459
科研通“疑难数据库(出版商)”最低求助积分说明 615172
版权声明 598844