Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114224-114224 被引量:49
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄蛋黄发布了新的文献求助10
1秒前
两袖清风发布了新的文献求助10
4秒前
5秒前
7秒前
永远55度完成签到,获得积分10
8秒前
8秒前
胡萝卜发布了新的文献求助10
9秒前
9秒前
红柚子不酸完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
Docgyj完成签到 ,获得积分0
11秒前
黄蛋黄完成签到,获得积分10
11秒前
黑化小狗完成签到 ,获得积分10
12秒前
12秒前
shionn发布了新的文献求助10
13秒前
Rain发布了新的文献求助10
13秒前
14秒前
14秒前
WERIGHT发布了新的文献求助10
15秒前
15秒前
卓聪健发布了新的文献求助10
17秒前
18秒前
OU发布了新的文献求助10
18秒前
1234567发布了新的文献求助10
19秒前
拼搏的白云完成签到,获得积分10
20秒前
20秒前
22秒前
23秒前
明亮的冷雪完成签到,获得积分10
23秒前
24秒前
顾矜应助zzz采纳,获得10
24秒前
25秒前
Silole发布了新的文献求助10
25秒前
27秒前
黄远鹏完成签到 ,获得积分10
27秒前
飞快的盈发布了新的文献求助10
29秒前
zoey发布了新的文献求助10
30秒前
hush完成签到,获得积分20
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Corrosion and corrosion control 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5373655
求助须知:如何正确求助?哪些是违规求助? 4499675
关于积分的说明 14007024
捐赠科研通 4406529
什么是DOI,文献DOI怎么找? 2420537
邀请新用户注册赠送积分活动 1413340
关于科研通互助平台的介绍 1389891