亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier BV]
卷期号:192: 114224-114224 被引量:49
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助火星上含芙采纳,获得10
7秒前
19秒前
fanhuaxuejin完成签到 ,获得积分10
20秒前
23秒前
38秒前
冬雪丶消融完成签到,获得积分10
39秒前
HOPKINSON发布了新的文献求助10
43秒前
Paris完成签到 ,获得积分10
44秒前
真的想不出名儿了完成签到,获得积分20
47秒前
科目三应助ceeray23采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
鲁欢发布了新的文献求助10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
imlaoji发布了新的文献求助10
1分钟前
1分钟前
ceeray23发布了新的文献求助20
1分钟前
zzzz完成签到 ,获得积分10
3分钟前
dylan发布了新的文献求助10
3分钟前
3分钟前
Criminology34应助娇气的亦云采纳,获得10
3分钟前
量子星尘发布了新的文献求助150
3分钟前
我能读懂文献完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
3分钟前
dylan完成签到 ,获得积分20
3分钟前
caca完成签到,获得积分0
3分钟前
3分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Reflections of female probation practitioners: navigating the challenges of working with male offenders 500
Probation staff reflective practice: can it impact on outcomes for clients with personality difficulties? 500
PRINCIPLES OF BEHAVIORAL ECONOMICS Microeconomics & Human Behavior 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5031109
求助须知:如何正确求助?哪些是违规求助? 4265949
关于积分的说明 13298344
捐赠科研通 4074987
什么是DOI,文献DOI怎么找? 2228809
邀请新用户注册赠送积分活动 1237448
关于科研通互助平台的介绍 1162152