Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114224-114224 被引量:49
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信的绮烟完成签到,获得积分10
刚刚
Li完成签到,获得积分0
刚刚
冬至完成签到,获得积分10
刚刚
屎上雕花选手完成签到,获得积分10
1秒前
小羊烧鸡完成签到,获得积分20
1秒前
Owen应助杨朝辉采纳,获得10
2秒前
HOHO发布了新的文献求助10
2秒前
Zhihu发布了新的文献求助10
3秒前
丁一发布了新的文献求助10
3秒前
小点完成签到 ,获得积分10
3秒前
llllda发布了新的文献求助10
3秒前
科研通AI6.1应助Nebulous采纳,获得10
3秒前
3秒前
whh发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
qingli应助zzt采纳,获得10
5秒前
Lucas应助更上一层楼采纳,获得10
5秒前
5秒前
酷波er应助天天采纳,获得10
6秒前
Flynn完成签到,获得积分10
6秒前
wobisheng完成签到,获得积分10
6秒前
香蕉发夹完成签到,获得积分10
6秒前
8秒前
11111完成签到,获得积分20
8秒前
哭泣青烟完成签到 ,获得积分10
9秒前
靶向噬菌体完成签到,获得积分10
9秒前
Owen应助小黑妞采纳,获得10
9秒前
llllda完成签到,获得积分10
9秒前
典雅路人完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
becky1234567完成签到,获得积分20
10秒前
故里发布了新的文献求助10
10秒前
隐形曼青应助whh采纳,获得10
10秒前
10秒前
11秒前
今后应助qiushui采纳,获得10
11秒前
梁敏完成签到,获得积分10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750533
求助须知:如何正确求助?哪些是违规求助? 5464445
关于积分的说明 15367142
捐赠科研通 4889534
什么是DOI,文献DOI怎么找? 2629268
邀请新用户注册赠送积分活动 1577591
关于科研通互助平台的介绍 1534036