Towards machine-learning driven prognostics and health management of Li-ion batteries. A comprehensive review

预言 背景(考古学) 健康管理体系 系统工程 风险分析(工程) 过程(计算) 电池(电) 工程类 可靠性工程 计算机科学 医学 病理 替代医学 功率(物理) 古生物学 量子力学 物理 操作系统 生物
作者
Sahar Khaleghi,Md Sazzad Hosen,Joeri Van Mierlo,Maitane Berecibar
出处
期刊:Renewable & Sustainable Energy Reviews [Elsevier]
卷期号:192: 114224-114224 被引量:12
标识
DOI:10.1016/j.rser.2023.114224
摘要

Prognostics and health management (PHM) has emerged as a vital research discipline for optimizing the maintenance of operating systems by detecting health degradation and accurately predicting their remaining useful life. In the context of lithium-ion batteries, PHM methodologies have gained significant attention due to their potential for enhancing battery maintenance and ensuring safe and reliable operation. Among the various approaches, data-driven methodologies, particularly those leveraging machine learning (ML) models, have gained interest for their accuracy and simplicity. To develop an optimized data-driven PHM system for batteries, a comprehensive understanding of each step involved in the PHM process is crucial. This review paper aims to address this need by providing a thorough analysis of the different phases of battery PHM, encompassing data acquisition, feature engineering, health diagnosis, and health prognosis. In contrast to previous review papers that primarily focused on battery health diagnosis and prognosis methods, this work goes beyond by encompassing all essential steps necessary for developing a tailored PHM methodology specific to lithium-ion batteries. By covering data acquisition methods, feature engineering techniques, as well as health diagnosis and prognosis methods, this paper fills a significant gap in the existing literature. It serves as a comprehensive roadmap for researchers and practitioners aiming to develop PHM systems for lithium-ion batteries using ML techniques. With its in-depth analysis and critical insights, this review paper constitutes a substantial contribution to the field. It provides valuable guidance for designing effective PHM methodologies and paves the way for further advancements in battery maintenance and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
英姑应助桂魄采纳,获得10
刚刚
刚刚
流北爷发布了新的文献求助10
1秒前
开心完成签到,获得积分10
1秒前
gguc发布了新的文献求助10
2秒前
万能图书馆应助okghy采纳,获得10
2秒前
2秒前
怕黑道消完成签到 ,获得积分10
2秒前
王小布完成签到,获得积分10
3秒前
石头发布了新的文献求助10
3秒前
楼下小白龙完成签到,获得积分10
3秒前
润润轩轩发布了新的文献求助10
3秒前
3秒前
Echo完成签到,获得积分10
4秒前
zmmmm发布了新的文献求助10
5秒前
雪山飞龙发布了新的文献求助30
5秒前
5秒前
Jenny应助小土豆采纳,获得50
5秒前
情怀应助布鲁鲁采纳,获得10
5秒前
5秒前
悦耳寒松发布了新的文献求助10
6秒前
6秒前
霍嘉文完成签到,获得积分10
6秒前
7秒前
bluesiryao发布了新的文献求助10
7秒前
李爱国应助23采纳,获得10
8秒前
8秒前
SHJ发布了新的文献求助10
8秒前
开心的幻柏完成签到 ,获得积分10
8秒前
大神完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
闪闪的YOSH完成签到,获得积分10
9秒前
Jimmy完成签到,获得积分10
9秒前
仁爱书白完成签到,获得积分10
10秒前
10秒前
孤独的珩发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794