A novel frog-like meta-structure with linkage mechanism for low-frequency vibration isolation

联动装置(软件) 隔振 振动 刚度 超材料 结构工程 机制(生物学) 流离失所(心理学) 计算机科学 物理 工程类 声学 光学 基因 量子力学 化学 生物化学 心理治疗师 心理学
作者
Xiaoyun Li,Jixiao Wang,Yijun Chai,Xiongwei Yang,Chun‐Ming Wang,Yueming Li
出处
期刊:Journal of Physics D [IOP Publishing]
卷期号:57 (13): 135304-135304
标识
DOI:10.1088/1361-6463/ad1851
摘要

Abstract Structures with linkage mechanism, which could be widely seen in engineering, usually need to bear a certain load and exhibit ideal vibration isolation performance. One of the key factors affecting the mechanical and vibration properties is the connection behavior of the linkage mechanism. To clarify its influence on the vibration characteristics, a novel frog-like meta-structure by introducing a linkage mechanism into the conventional locally resonant metamaterial with a mass-spring resonator is proposed in the present paper, in which the linkage connection is considered as three types of hinged, fixed and elastic, respectively. The equivalent dynamic model of the meta-structure is established theoretically to calculate the effective material properties, which is then validated numerically through band gap and vibration analysis. The results show that the hinged linkage offers equivalent mass and free vertical displacement, while the fixed linkage provides supporting stiffness, shifting the band gap towards higher frequencies. An appropriate elastic connection can enhance the ‘spring-vibrator’ effect, which in turn can significantly expand the low-frequency vibration suppression range of the structure. Experiments are also conducted corresponding to the different linkage mechanisms, and the dynamic model is verified. This study could provide a new idea for promoting the application of the locally resonant meta-structure with a linkage mechanism in the field of low-frequency vibration isolation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dktrrrr完成签到,获得积分10
刚刚
季生完成签到,获得积分10
3秒前
徐徐完成签到,获得积分10
3秒前
4秒前
4秒前
haku完成签到,获得积分10
6秒前
可爱的函函应助laodie采纳,获得10
8秒前
Singularity应助忆楠采纳,获得10
9秒前
10秒前
请叫我风吹麦浪应助PengHu采纳,获得30
11秒前
jjjjjj完成签到,获得积分10
11秒前
凝子老师发布了新的文献求助10
13秒前
13秒前
橙子fy16_发布了新的文献求助10
15秒前
cookie完成签到,获得积分10
15秒前
柒柒的小熊完成签到,获得积分10
16秒前
16秒前
Hello应助萌之痴痴采纳,获得10
17秒前
hahaer完成签到,获得积分10
19秒前
领导范儿应助失眠虔纹采纳,获得10
20秒前
21秒前
Owen应助凝子老师采纳,获得10
24秒前
24秒前
南宫炽滔完成签到 ,获得积分10
26秒前
26秒前
丘比特应助飞羽采纳,获得10
27秒前
沙拉发布了新的文献求助10
27秒前
28秒前
29秒前
椰子糖完成签到 ,获得积分10
30秒前
30秒前
ZHU完成签到,获得积分10
31秒前
阳阳发布了新的文献求助10
32秒前
Raymond应助雪山飞龙采纳,获得10
32秒前
kk发布了新的文献求助10
33秒前
33秒前
34秒前
34秒前
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849