Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning

计算机科学 匹配(统计) 激励 机制(生物学) 机构设计 数学 统计 认识论 哲学 经济 微观经济学
作者
Hangjian Zhang,Ya‐Nan Jin,Jianfeng Lu,Shuqin Cao,Qing Dai,Shasha Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 24735-24750 被引量:2
标识
DOI:10.1109/access.2024.3365547
摘要

With the growing public attention to data privacy protection, the problem of data silos has been exacerbated, which makes it more difficult for crowd intelligence technologies to get off the ground. Meanwhile, Federated Learning (FL) has received great attention for its ability to break data silos and jointly build machine learning models. To crack the data silo problem in crowd intelligence, we propose a new Crowd Federated Learning (CFL) framework, which is a two-tier architecture consisting of a cloud server, model owners, and data collectors, that enables collaborative model training among individuals without the need for raw data interaction. However, existing work struggles to simultaneously ensure the balance of incentives among data collectors, model owners, and cloud server, which can affect the willingness of sharing and collaboration among subjects. To solve the above problem, we propose a hierarchical incentive mechanism named FedCom , i.e., Crowd Federated Learning for Contribution matching, to match participants' contributions with rewards. We theoretically prove that FedCom has contribution matching fairness, and conduct extensive comparative experiments with five baselines on one simulated dataset and four real-world datasets. Experimental results validate that FedCom is able to reduce the computation time of contribution evaluation by about 8 times and improve the global model performance by about 2% while ensuring fairness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ff发布了新的文献求助10
1秒前
1秒前
王蝶完成签到 ,获得积分10
1秒前
吃吃菜菜吧完成签到 ,获得积分10
2秒前
斯文败类应助锅锅采纳,获得10
2秒前
wdw2501发布了新的文献求助10
4秒前
4秒前
279完成签到,获得积分10
6秒前
6秒前
zzzzzzp发布了新的文献求助10
7秒前
7秒前
7秒前
Ling完成签到,获得积分10
7秒前
8秒前
lllin00发布了新的文献求助10
8秒前
Niki发布了新的文献求助10
8秒前
考拉完成签到,获得积分10
8秒前
元元发布了新的文献求助10
8秒前
9秒前
wxy发布了新的文献求助10
10秒前
dablack发布了新的文献求助10
10秒前
laifeihong完成签到,获得积分20
10秒前
10秒前
锅锅完成签到,获得积分10
11秒前
梵墨发布了新的文献求助10
11秒前
11秒前
殷勤的紫槐应助憨憨哈采纳,获得200
11秒前
刘嘉玲完成签到,获得积分10
12秒前
今后应助ewfr采纳,获得10
12秒前
13秒前
13秒前
香蕉觅云应助zy采纳,获得10
13秒前
14秒前
15秒前
15秒前
科研通AI6应助xiongwenlei采纳,获得10
16秒前
17秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5636950
求助须知:如何正确求助?哪些是违规求助? 4742342
关于积分的说明 14997109
捐赠科研通 4795139
什么是DOI,文献DOI怎么找? 2561855
邀请新用户注册赠送积分活动 1521357
关于科研通互助平台的介绍 1481458