Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning

计算机科学 匹配(统计) 激励 机制(生物学) 机构设计 数学 统计 认识论 哲学 经济 微观经济学
作者
Hangjian Zhang,Ya‐Nan Jin,Jianfeng Lu,Shuqin Cao,Qing Dai,Shasha Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 24735-24750 被引量:2
标识
DOI:10.1109/access.2024.3365547
摘要

With the growing public attention to data privacy protection, the problem of data silos has been exacerbated, which makes it more difficult for crowd intelligence technologies to get off the ground. Meanwhile, Federated Learning (FL) has received great attention for its ability to break data silos and jointly build machine learning models. To crack the data silo problem in crowd intelligence, we propose a new Crowd Federated Learning (CFL) framework, which is a two-tier architecture consisting of a cloud server, model owners, and data collectors, that enables collaborative model training among individuals without the need for raw data interaction. However, existing work struggles to simultaneously ensure the balance of incentives among data collectors, model owners, and cloud server, which can affect the willingness of sharing and collaboration among subjects. To solve the above problem, we propose a hierarchical incentive mechanism named FedCom , i.e., Crowd Federated Learning for Contribution matching, to match participants' contributions with rewards. We theoretically prove that FedCom has contribution matching fairness, and conduct extensive comparative experiments with five baselines on one simulated dataset and four real-world datasets. Experimental results validate that FedCom is able to reduce the computation time of contribution evaluation by about 8 times and improve the global model performance by about 2% while ensuring fairness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smottom应助很难过采纳,获得10
刚刚
2秒前
2秒前
Dailalala发布了新的文献求助10
2秒前
优雅枫叶完成签到,获得积分20
3秒前
量子星尘发布了新的文献求助10
3秒前
顺心含蕾应助EIS采纳,获得10
5秒前
B站萧亚轩发布了新的文献求助10
6秒前
安元菱完成签到 ,获得积分10
6秒前
6秒前
6秒前
冷静宛海完成签到,获得积分10
7秒前
7秒前
8秒前
fugdu发布了新的文献求助10
8秒前
时舒完成签到 ,获得积分10
8秒前
自信的柠檬完成签到,获得积分20
9秒前
10秒前
善学以致用应助ABC的风格采纳,获得10
11秒前
baron_lin发布了新的文献求助10
11秒前
研友_LN7x6n发布了新的文献求助30
12秒前
852应助风风采纳,获得10
12秒前
Dailalala完成签到,获得积分10
12秒前
13秒前
安静心情发布了新的文献求助10
13秒前
丘比特应助竞鹤采纳,获得10
13秒前
香蕉觅云应助高很帅采纳,获得10
13秒前
14秒前
14秒前
司空天磊发布了新的文献求助10
14秒前
Hydaniel发布了新的文献求助10
14秒前
dd36完成签到,获得积分10
15秒前
昵称11发布了新的文献求助10
17秒前
Owen应助Huguizhou采纳,获得10
17秒前
韩涵完成签到 ,获得积分10
17秒前
充电宝应助2499297293采纳,获得10
17秒前
aich完成签到,获得积分10
17秒前
鲅鱼圈完成签到,获得积分10
18秒前
19秒前
一朵梅花完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342