Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning

计算机科学 匹配(统计) 激励 机制(生物学) 机构设计 哲学 统计 数学 认识论 经济 微观经济学
作者
Hangjian Zhang,Ya‐Nan Jin,Jianfeng Lu,Shuqin Cao,Qing Dai,Shasha Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 24735-24750 被引量:2
标识
DOI:10.1109/access.2024.3365547
摘要

With the growing public attention to data privacy protection, the problem of data silos has been exacerbated, which makes it more difficult for crowd intelligence technologies to get off the ground. Meanwhile, Federated Learning (FL) has received great attention for its ability to break data silos and jointly build machine learning models. To crack the data silo problem in crowd intelligence, we propose a new Crowd Federated Learning (CFL) framework, which is a two-tier architecture consisting of a cloud server, model owners, and data collectors, that enables collaborative model training among individuals without the need for raw data interaction. However, existing work struggles to simultaneously ensure the balance of incentives among data collectors, model owners, and cloud server, which can affect the willingness of sharing and collaboration among subjects. To solve the above problem, we propose a hierarchical incentive mechanism named FedCom , i.e., Crowd Federated Learning for Contribution matching, to match participants' contributions with rewards. We theoretically prove that FedCom has contribution matching fairness, and conduct extensive comparative experiments with five baselines on one simulated dataset and four real-world datasets. Experimental results validate that FedCom is able to reduce the computation time of contribution evaluation by about 8 times and improve the global model performance by about 2% while ensuring fairness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助你怎么睡得着觉采纳,获得10
刚刚
领导范儿应助多金多金采纳,获得10
1秒前
小文完成签到,获得积分10
1秒前
RAFA发布了新的文献求助10
2秒前
bin_yao完成签到,获得积分10
2秒前
2秒前
xr发布了新的文献求助10
2秒前
李子恒发布了新的文献求助10
2秒前
寒生完成签到,获得积分10
3秒前
黄雨淋完成签到,获得积分10
4秒前
DuanYou完成签到,获得积分10
4秒前
5秒前
Criminology34应助ccc采纳,获得10
5秒前
大模型应助謓言采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
无奈的晴发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
当年明月发布了新的文献求助10
10秒前
12秒前
12秒前
F1t272发布了新的文献求助10
12秒前
鹿c3完成签到,获得积分10
13秒前
无奈的晴完成签到,获得积分10
13秒前
YY完成签到,获得积分10
14秒前
BowieHuang应助ddw采纳,获得10
15秒前
柒零七发布了新的文献求助10
15秒前
fx发布了新的文献求助10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
16秒前
顾矜应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049