Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning

计算机科学 匹配(统计) 激励 机制(生物学) 机构设计 哲学 统计 数学 认识论 经济 微观经济学
作者
Hangjian Zhang,Ya‐Nan Jin,Jianfeng Lu,Shuqin Cao,Qing Dai,Shasha Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 24735-24750 被引量:2
标识
DOI:10.1109/access.2024.3365547
摘要

With the growing public attention to data privacy protection, the problem of data silos has been exacerbated, which makes it more difficult for crowd intelligence technologies to get off the ground. Meanwhile, Federated Learning (FL) has received great attention for its ability to break data silos and jointly build machine learning models. To crack the data silo problem in crowd intelligence, we propose a new Crowd Federated Learning (CFL) framework, which is a two-tier architecture consisting of a cloud server, model owners, and data collectors, that enables collaborative model training among individuals without the need for raw data interaction. However, existing work struggles to simultaneously ensure the balance of incentives among data collectors, model owners, and cloud server, which can affect the willingness of sharing and collaboration among subjects. To solve the above problem, we propose a hierarchical incentive mechanism named FedCom , i.e., Crowd Federated Learning for Contribution matching, to match participants' contributions with rewards. We theoretically prove that FedCom has contribution matching fairness, and conduct extensive comparative experiments with five baselines on one simulated dataset and four real-world datasets. Experimental results validate that FedCom is able to reduce the computation time of contribution evaluation by about 8 times and improve the global model performance by about 2% while ensuring fairness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王慧颖发布了新的文献求助10
1秒前
1秒前
1秒前
xian完成签到,获得积分10
2秒前
3秒前
尽如给尽如的求助进行了留言
3秒前
4秒前
ange完成签到,获得积分10
4秒前
雨中石发布了新的文献求助10
4秒前
burrrrr完成签到,获得积分10
4秒前
5秒前
liu完成签到,获得积分10
7秒前
夏日香气发布了新的文献求助10
7秒前
7秒前
8秒前
burrrrr发布了新的文献求助30
8秒前
华仔应助俊杰采纳,获得10
8秒前
虚拟ID发布了新的文献求助10
9秒前
Ace完成签到,获得积分10
9秒前
小二郎应助Lenny采纳,获得30
10秒前
酷波er应助欢喜招牌采纳,获得10
10秒前
necos完成签到,获得积分10
11秒前
liu发布了新的文献求助10
11秒前
蓝色的纪念完成签到,获得积分10
11秒前
11秒前
hkh发布了新的文献求助10
13秒前
456发布了新的文献求助10
13秒前
14秒前
爆米花应助上进采纳,获得10
15秒前
研友_564485完成签到,获得积分10
16秒前
17秒前
大模型应助夜休2024采纳,获得10
17秒前
AlvinCZY发布了新的文献求助20
17秒前
Bingbingbing完成签到,获得积分10
19秒前
20秒前
尘封雪发布了新的文献求助10
20秒前
勤恳立轩发布了新的文献求助10
21秒前
21秒前
22秒前
虚拟ID完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998144
求助须知:如何正确求助?哪些是违规求助? 3537656
关于积分的说明 11272231
捐赠科研通 3276814
什么是DOI,文献DOI怎么找? 1807126
邀请新用户注册赠送积分活动 883718
科研通“疑难数据库(出版商)”最低求助积分说明 810014