Contribution Matching-Based Hierarchical Incentive Mechanism Design for Crowd Federated Learning

计算机科学 匹配(统计) 激励 机制(生物学) 机构设计 数学 统计 认识论 哲学 经济 微观经济学
作者
Hangjian Zhang,Ya‐Nan Jin,Jianfeng Lu,Shuqin Cao,Qing Dai,Shasha Yang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 24735-24750 被引量:2
标识
DOI:10.1109/access.2024.3365547
摘要

With the growing public attention to data privacy protection, the problem of data silos has been exacerbated, which makes it more difficult for crowd intelligence technologies to get off the ground. Meanwhile, Federated Learning (FL) has received great attention for its ability to break data silos and jointly build machine learning models. To crack the data silo problem in crowd intelligence, we propose a new Crowd Federated Learning (CFL) framework, which is a two-tier architecture consisting of a cloud server, model owners, and data collectors, that enables collaborative model training among individuals without the need for raw data interaction. However, existing work struggles to simultaneously ensure the balance of incentives among data collectors, model owners, and cloud server, which can affect the willingness of sharing and collaboration among subjects. To solve the above problem, we propose a hierarchical incentive mechanism named FedCom , i.e., Crowd Federated Learning for Contribution matching, to match participants' contributions with rewards. We theoretically prove that FedCom has contribution matching fairness, and conduct extensive comparative experiments with five baselines on one simulated dataset and four real-world datasets. Experimental results validate that FedCom is able to reduce the computation time of contribution evaluation by about 8 times and improve the global model performance by about 2% while ensuring fairness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苗条的善斓完成签到,获得积分10
刚刚
贪玩的跳跳糖完成签到,获得积分10
刚刚
爱撒娇的妙竹完成签到,获得积分10
2秒前
guanoo完成签到,获得积分10
2秒前
求是完成签到,获得积分20
2秒前
gyhmm完成签到,获得积分10
2秒前
刘勇完成签到,获得积分10
3秒前
3秒前
宝藏发布了新的文献求助10
3秒前
3秒前
落泺完成签到 ,获得积分10
3秒前
YBHTLLLL完成签到,获得积分10
4秒前
大个应助AN采纳,获得10
4秒前
槑槑发布了新的文献求助10
4秒前
4秒前
英俊的铭应助fairy采纳,获得30
4秒前
4秒前
zzrg发布了新的文献求助10
4秒前
Continue完成签到,获得积分10
4秒前
白踏歌发布了新的文献求助10
5秒前
殷晓阳发布了新的文献求助10
5秒前
5秒前
Owen应助静素雅格采纳,获得10
5秒前
5秒前
6秒前
6秒前
爆米花应助Edgar采纳,获得10
6秒前
6秒前
古猫宁发布了新的文献求助10
7秒前
7秒前
LovelyYy完成签到,获得积分10
7秒前
7秒前
初晴发布了新的文献求助10
7秒前
大帅发布了新的文献求助50
7秒前
8秒前
taotao216发布了新的文献求助10
8秒前
8秒前
CodeCraft应助轩然采纳,获得10
8秒前
英姑应助存在采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848