A Deep Learning Approach to Estimate Soil Organic Carbon from Remote Sensing

遥感 环境科学 土壤碳 土壤科学 地质学 土壤水分
作者
Marko Pavlović,Slobodan Ilić,Neobojša Ralevic,Nenad Antonić,Dylan Warren Raffa,Michele Bandecchi,Dubravko Ćulibrk
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (4): 655-655 被引量:3
标识
DOI:10.3390/rs16040655
摘要

Monitoring soil organic carbon (SOC) typically assumes conducting a labor-intensive soil sampling campaign, followed by laboratory testing, which is both expensive and impractical for generating useful, spatially continuous data products. The present study leverages the power of machine learning (ML) and, in particular, deep neural networks (DNNs) for segmentation, as well as satellite imagery, to estimate the SOC remotely. We propose a new two-stage pipeline for remote SOC estimation, which relies on using a DNN trained to classify land cover to perform feature extraction, while the SOC estimation is performed by a different ML model. The first stage is an image segmentation DNN with the U-Net architecture, which is trained to estimate the land cover for an observed geographical region, based on multi-spectral images taken by the Sentinel-2 satellite constellation. This estimator is subsequently used to extract the latent feature vector for each of the output pixels, by rolling back from the output (dense) layer of the U-Net and accessing the last available convolutional layer of the same dimension as our desired output. The second stage is trained on a set of feature vectors extracted at the coordinates for which manual SOC measurements exist. We tested a variety of ML models and report on their performance. Using the best extremely randomized trees model, we generated a spatially continuous map of SOC estimations for the region of Tuscany, in Italy, with a resolution of 10 m, to share with the researchers as a means of validating the results and to demonstrate the efficiency of the proposed approach, which can can easily be scaled to create a global continuous SOC map.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
受伤自行车完成签到,获得积分10
1秒前
2秒前
2秒前
LL来了完成签到 ,获得积分10
2秒前
云横秦岭家何在完成签到,获得积分10
3秒前
FashionBoy应助谷谷菜采纳,获得10
3秒前
正在获取昵称中...完成签到,获得积分10
4秒前
深秋大晌午完成签到 ,获得积分10
4秒前
长矛沾屎戳谁谁死完成签到,获得积分10
4秒前
charry完成签到,获得积分10
4秒前
4秒前
iuim完成签到,获得积分10
5秒前
岁月荣耀完成签到,获得积分10
5秒前
SciGPT应助科研八戒采纳,获得10
5秒前
华仔应助梓沐采纳,获得10
5秒前
细腻怜容发布了新的文献求助30
6秒前
拼搏不正发布了新的文献求助10
6秒前
隐形的飞雪完成签到,获得积分10
6秒前
6秒前
DAN发布了新的文献求助10
7秒前
李健的小迷弟应助加减法采纳,获得10
7秒前
Steve发布了新的文献求助10
7秒前
7秒前
火之高兴完成签到 ,获得积分10
7秒前
星辰大海应助急雪回风采纳,获得10
8秒前
俟天晴完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
FloppyWow发布了新的文献求助10
9秒前
QiJiLuLu完成签到,获得积分10
9秒前
开着飞机骑拖拉机完成签到,获得积分10
9秒前
岁月荣耀发布了新的文献求助10
9秒前
大意的梦山完成签到,获得积分10
9秒前
标致小甜瓜完成签到,获得积分10
9秒前
10秒前
柴yuki完成签到 ,获得积分10
10秒前
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Modern nutrition in health and disease 10th ed 1000
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3550789
求助须知:如何正确求助?哪些是违规求助? 3127132
关于积分的说明 9372437
捐赠科研通 2826256
什么是DOI,文献DOI怎么找? 1553641
邀请新用户注册赠送积分活动 725007
科研通“疑难数据库(出版商)”最低求助积分说明 714516