Machine Learning–Based Prediction of Suicidality in Adolescents With Allergic Rhinitis: Derivation and Validation in 2 Independent Nationwide Cohorts

医学 机器学习 心理学 人工智能 计算机科学
作者
Hojae Lee,Joong Ki Cho,Jaeyu Park,Hyeri Lee,Guillaume Fond,Laurent Boyer,Hyeon Jin Kim,Seoyoung Park,Wonyoung Cho,Hayeon Lee,Jinseok Lee,Dong Keon Yon
出处
期刊:Journal of Medical Internet Research 卷期号:26: e51473-e51473 被引量:20
标识
DOI:10.2196/51473
摘要

Background Given the additional risk of suicide-related behaviors in adolescents with allergic rhinitis (AR), it is important to use the growing field of machine learning (ML) to evaluate this risk. Objective This study aims to evaluate the validity and usefulness of an ML model for predicting suicide risk in patients with AR. Methods We used data from 2 independent survey studies, Korea Youth Risk Behavior Web-based Survey (KYRBS; n=299,468) for the original data set and Korea National Health and Nutrition Examination Survey (KNHANES; n=833) for the external validation data set, to predict suicide risks of AR in adolescents aged 13 to 18 years, with 3.45% (10,341/299,468) and 1.4% (12/833) of the patients attempting suicide in the KYRBS and KNHANES studies, respectively. The outcome of interest was the suicide attempt risks. We selected various ML-based models with hyperparameter tuning in the discovery and performed an area under the receiver operating characteristic curve (AUROC) analysis in the train, test, and external validation data. Results The study data set included 299,468 (KYRBS; original data set) and 833 (KNHANES; external validation data set) patients with AR recruited between 2005 and 2022. The best-performing ML model was the random forest model with a mean AUROC of 84.12% (95% CI 83.98%-84.27%) in the original data set. Applying this result to the external validation data set revealed the best performance among the models, with an AUROC of 89.87% (sensitivity 83.33%, specificity 82.58%, accuracy 82.59%, and balanced accuracy 82.96%). While looking at feature importance, the 5 most important features in predicting suicide attempts in adolescent patients with AR are depression, stress status, academic achievement, age, and alcohol consumption. Conclusions This study emphasizes the potential of ML models in predicting suicide risks in patients with AR, encouraging further application of these models in other conditions to enhance adolescent health and decrease suicide rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘可望发布了新的文献求助10
刚刚
刚刚
刚刚
liusoojoo完成签到,获得积分10
1秒前
2秒前
sukasuka发布了新的文献求助10
2秒前
2秒前
Owen应助木子弓长采纳,获得10
2秒前
2秒前
王哲发布了新的文献求助10
4秒前
zx发布了新的文献求助10
5秒前
1112发布了新的文献求助10
5秒前
maplesirup完成签到,获得积分10
6秒前
7秒前
7秒前
稳重海豚发布了新的文献求助10
8秒前
8秒前
斯文败类应助滴滴滴采纳,获得10
8秒前
midoli完成签到,获得积分10
9秒前
Akim应助司空豁采纳,获得10
11秒前
粘粘1234发布了新的文献求助10
13秒前
14秒前
猪猪hero发布了新的文献求助30
14秒前
细心蚂蚁发布了新的文献求助20
16秒前
无花果应助科研通管家采纳,获得10
17秒前
思源应助科研通管家采纳,获得10
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
Hello应助科研通管家采纳,获得10
17秒前
赘婿应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得30
17秒前
Lucas应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
我是老大应助科研通管家采纳,获得10
17秒前
爆米花应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得10
17秒前
Akim应助科研通管家采纳,获得30
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
Pavel发布了新的文献求助10
18秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 纳米技术 物理 计算机科学 化学工程 基因 复合材料 遗传学 物理化学 免疫学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3416639
求助须知:如何正确求助?哪些是违规求助? 3018421
关于积分的说明 8884216
捐赠科研通 2705746
什么是DOI,文献DOI怎么找? 1483866
科研通“疑难数据库(出版商)”最低求助积分说明 685830
邀请新用户注册赠送积分活动 681004