Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
E.T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:19
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
泡椒完成签到,获得积分10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
田様应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734681
求助须知:如何正确求助?哪些是违规求助? 5355580
关于积分的说明 15327525
捐赠科研通 4879249
什么是DOI,文献DOI怎么找? 2621785
邀请新用户注册赠送积分活动 1570998
关于科研通互助平台的介绍 1527750