亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
Eliott T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:5
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助追寻妖妖采纳,获得10
刚刚
2秒前
6秒前
7秒前
星辰大海应助1111采纳,获得30
8秒前
11秒前
11秒前
张靖超完成签到 ,获得积分10
13秒前
追寻妖妖发布了新的文献求助10
16秒前
小蘑菇应助LL采纳,获得10
16秒前
23秒前
24秒前
Xiaojiu完成签到 ,获得积分10
25秒前
qpp完成签到,获得积分10
26秒前
1111发布了新的文献求助30
27秒前
夏天来了发布了新的文献求助10
34秒前
yuyu完成签到,获得积分10
40秒前
小小楊完成签到 ,获得积分10
41秒前
潇洒绿蕊完成签到,获得积分10
43秒前
45秒前
科研通AI2S应助wxyllxx采纳,获得10
49秒前
归海梦岚完成签到,获得积分0
52秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
华仔应助喝杯水再走采纳,获得10
56秒前
56秒前
科研通AI2S应助wxyllxx采纳,获得10
1分钟前
1分钟前
1分钟前
LL发布了新的文献求助10
1分钟前
1分钟前
1111完成签到,获得积分20
1分钟前
Pei发布了新的文献求助10
1分钟前
受伤雁荷发布了新的文献求助10
1分钟前
1分钟前
慕青应助畅快城采纳,获得10
1分钟前
善学以致用应助Pei采纳,获得10
1分钟前
1分钟前
畅快城发布了新的文献求助10
1分钟前
珊珊完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 720
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Typology of Conditional Constructions 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3566592
求助须知:如何正确求助?哪些是违规求助? 3139312
关于积分的说明 9431510
捐赠科研通 2840151
什么是DOI,文献DOI怎么找? 1560959
邀请新用户注册赠送积分活动 730103
科研通“疑难数据库(出版商)”最低求助积分说明 717828