Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
E.T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:19
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
acers发布了新的文献求助10
刚刚
熠云发布了新的文献求助10
刚刚
器123完成签到,获得积分20
刚刚
英俊安荷发布了新的文献求助10
1秒前
1秒前
1秒前
ding应助阿婷采纳,获得10
1秒前
ZHANG发布了新的文献求助10
1秒前
业伟发布了新的文献求助10
2秒前
SciGPT应助kkkjjj采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
充电宝应助Zayne采纳,获得10
3秒前
JamesPei应助ecrrry采纳,获得10
4秒前
4秒前
coco完成签到 ,获得积分10
4秒前
浪客完成签到 ,获得积分10
5秒前
苏蔚完成签到,获得积分10
5秒前
与山发布了新的文献求助10
5秒前
5秒前
bbanshan完成签到,获得积分10
5秒前
6秒前
菜菜发布了新的文献求助10
6秒前
小豆豆严发布了新的文献求助10
6秒前
万能图书馆应助暗生崎乐采纳,获得10
7秒前
orixero应助wsmwsm采纳,获得10
7秒前
7秒前
7秒前
8秒前
8秒前
cookie完成签到,获得积分10
9秒前
kkkjjj完成签到,获得积分20
9秒前
永恒完成签到,获得积分10
9秒前
柑橘乌云发布了新的文献求助10
9秒前
plusweng完成签到 ,获得积分10
10秒前
英姑应助刘玄德采纳,获得10
11秒前
娜娜发布了新的文献求助10
11秒前
hxm发布了新的文献求助10
11秒前
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751700
求助须知:如何正确求助?哪些是违规求助? 5469951
关于积分的说明 15371019
捐赠科研通 4890794
什么是DOI,文献DOI怎么找? 2629946
邀请新用户注册赠送积分活动 1578155
关于科研通互助平台的介绍 1534256