清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
E.T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:19
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可完成签到 ,获得积分20
1秒前
郭强完成签到,获得积分10
8秒前
阳光的丹雪完成签到,获得积分10
14秒前
15秒前
33秒前
50秒前
xiaoyi完成签到 ,获得积分10
1分钟前
1分钟前
复杂的可乐完成签到 ,获得积分10
1分钟前
1分钟前
zhanglh完成签到 ,获得积分10
1分钟前
隐形荟完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
sadh2完成签到 ,获得积分10
2分钟前
2分钟前
地板趴趴熊完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
arizaki7发布了新的文献求助10
3分钟前
月军完成签到,获得积分10
3分钟前
3分钟前
3分钟前
小灰灰完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
打打应助西蜀小吏采纳,获得10
3分钟前
3分钟前
3分钟前
4分钟前
西蜀小吏发布了新的文献求助10
4分钟前
冯琳栋完成签到 ,获得积分10
4分钟前
4分钟前
Emma完成签到 ,获得积分10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
紫熊完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
不如看海完成签到 ,获得积分10
4分钟前
地板趴趴熊关注了科研通微信公众号
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5802093
求助须知:如何正确求助?哪些是违规求助? 5824238
关于积分的说明 15505904
捐赠科研通 4927976
什么是DOI,文献DOI怎么找? 2653013
邀请新用户注册赠送积分活动 1600065
关于科研通互助平台的介绍 1554899