Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
Eliott T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:5
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜橙完成签到 ,获得积分10
1秒前
澈哩发布了新的文献求助10
2秒前
3秒前
4秒前
乐乐应助武理采纳,获得10
4秒前
斯文败类应助包子采纳,获得10
6秒前
6秒前
波因斯坦完成签到,获得积分10
8秒前
王华瑞发布了新的文献求助10
9秒前
11秒前
自己发布了新的文献求助10
11秒前
齐静春完成签到,获得积分10
14秒前
TH发布了新的文献求助10
14秒前
酷波er应助张立人采纳,获得10
17秒前
zpl发布了新的文献求助10
18秒前
王华瑞完成签到,获得积分10
19秒前
20秒前
汉堡包应助开朗芸采纳,获得10
21秒前
CipherSage应助自己采纳,获得10
21秒前
研友_2484完成签到,获得积分10
21秒前
hyx完成签到 ,获得积分10
21秒前
zz完成签到,获得积分10
22秒前
刘六刘完成签到,获得积分10
23秒前
23秒前
汉堡包应助香云采纳,获得10
24秒前
skr发布了新的文献求助10
24秒前
追寻松发布了新的文献求助10
24秒前
和谐的饼干完成签到,获得积分10
24秒前
26秒前
科目三应助瓜田里的闰土采纳,获得30
26秒前
科研通AI2S应助sunshine采纳,获得20
27秒前
刘丽梅完成签到 ,获得积分10
28秒前
28秒前
张立人发布了新的文献求助10
29秒前
练得身形似鹤形完成签到 ,获得积分10
29秒前
30秒前
江辰汐月发布了新的文献求助20
30秒前
我是老大应助博修采纳,获得10
31秒前
Achu发布了新的文献求助10
33秒前
干净吐司发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962605
求助须知:如何正确求助?哪些是违规求助? 3508565
关于积分的说明 11141892
捐赠科研通 3241353
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872888
科研通“疑难数据库(出版商)”最低求助积分说明 803501