Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
E.T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:19
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿布与小佛完成签到 ,获得积分10
刚刚
Sunflower完成签到 ,获得积分10
刚刚
细心大碗完成签到,获得积分10
刚刚
火星上芹菜完成签到,获得积分10
刚刚
yaooo发布了新的文献求助10
刚刚
BetterH完成签到 ,获得积分10
刚刚
极光完成签到,获得积分10
刚刚
Foxjker完成签到 ,获得积分10
刚刚
英俊的铭应助六日爱科研采纳,获得10
1秒前
1秒前
NexusExplorer应助前行的灿采纳,获得10
1秒前
1秒前
任白993发布了新的文献求助10
1秒前
tianxiangning发布了新的文献求助10
2秒前
凌云完成签到,获得积分10
2秒前
正好发布了新的文献求助10
2秒前
guozizi发布了新的文献求助10
2秒前
小学猹完成签到,获得积分10
2秒前
五五完成签到,获得积分10
2秒前
3秒前
3秒前
琳宝贝发布了新的文献求助10
3秒前
Joff_W完成签到,获得积分10
3秒前
缥缈白翠完成签到,获得积分10
3秒前
伶俐的紫蓝完成签到,获得积分10
4秒前
bingsu108完成签到,获得积分10
4秒前
mawenxing完成签到,获得积分10
4秒前
无限翅膀完成签到,获得积分10
5秒前
一年5篇发布了新的文献求助10
5秒前
张大大完成签到,获得积分10
5秒前
sx完成签到 ,获得积分10
5秒前
12完成签到,获得积分10
5秒前
xx发布了新的文献求助10
6秒前
积极纲完成签到,获得积分20
6秒前
lllllsy发布了新的文献求助10
6秒前
烂漫的金针菇完成签到,获得积分10
6秒前
圈圈完成签到 ,获得积分10
6秒前
韩夏菲发布了新的文献求助10
7秒前
wushengdeyu完成签到 ,获得积分10
7秒前
趙途嘵生完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
Theories in Second Language Acquisition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5568425
求助须知:如何正确求助?哪些是违规求助? 4653025
关于积分的说明 14703215
捐赠科研通 4594849
什么是DOI,文献DOI怎么找? 2521311
邀请新用户注册赠送积分活动 1492962
关于科研通互助平台的介绍 1463778