Atomistic simulations of nuclear fuel UO2 with machine learning interatomic potentials

材料科学
作者
E.T. Dubois,Julien Tranchida,J. Bouchet,Jean‐Bernard Maillet
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:8 (2) 被引量:19
标识
DOI:10.1103/physrevmaterials.8.025402
摘要

We present the development of machine-learning interatomic potentials for uranium dioxide ${\mathrm{UO}}_{2}$. Density functional theory calculations with a Hubbard $U$ correction were leveraged to construct a training set of atomic configurations. This training set was designed to capture elastic and plastic deformations, as well as point and extended defects, and it was enriched through an active learning procedure. New configurations were added to the training database using a multiobjective criterion based on predicted uncertainties on energy and forces (obtained using a committee of models) and relative distances between new configurations in descriptor space. Two machine-learning potentials were developed based on physically sound pairwise potentials, which include the Coulombic interaction: a neural network potential and a SNAP potential. These potentials were optimized to minimize the root mean square error on the training database. Subsequently, the SNAP potential was used to compute the stacking fault energy surface in multiple directions, and the stabilized configurations were employed for subsequent DFT minimizations. The final DFT stacking fault energy surfaces of ${\mathrm{UO}}_{2}$ are presented, and the associated configurations are included in the training database for a new optimization. Finally, the results obtained from both machine-learned potentials were compared to standard semiempirical ones, demonstrating their excellent predictive capabilities for solid properties. These properties include defect formation energies, $\ensuremath{\gamma}$ surface, elastic properties, and phonon dispersion curves up to the Breidig transition temperature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰花二狗他爹完成签到,获得积分10
3秒前
打打应助嘻嘻哈哈采纳,获得10
3秒前
龙弟弟完成签到 ,获得积分10
5秒前
6秒前
直率雪糕完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
12秒前
张图门完成签到 ,获得积分10
15秒前
白昼の月完成签到 ,获得积分0
18秒前
虚心青梦完成签到 ,获得积分10
18秒前
24秒前
徐团伟完成签到 ,获得积分10
24秒前
25秒前
29秒前
嘻嘻哈哈发布了新的文献求助10
29秒前
量子星尘发布了新的文献求助10
29秒前
Criminology34应助111采纳,获得10
33秒前
李健完成签到 ,获得积分10
35秒前
勤劳的颤完成签到 ,获得积分10
35秒前
36秒前
量子星尘发布了新的文献求助10
42秒前
勤奋的越彬完成签到 ,获得积分10
52秒前
yx完成签到 ,获得积分10
54秒前
55秒前
BowieHuang应助tubaba8848采纳,获得10
57秒前
量子星尘发布了新的文献求助10
1分钟前
黛酾黑魑完成签到 ,获得积分10
1分钟前
1分钟前
斯文败类应助王颖超采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
小白完成签到 ,获得积分10
1分钟前
万里天完成签到 ,获得积分10
1分钟前
iwsaml完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
王颖超发布了新的文献求助30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
三年三班三井寿完成签到,获得积分10
1分钟前
hjc641发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773288
求助须知:如何正确求助?哪些是违规求助? 5609323
关于积分的说明 15430767
捐赠科研通 4905836
什么是DOI,文献DOI怎么找? 2639845
邀请新用户注册赠送积分活动 1587745
关于科研通互助平台的介绍 1542740