已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CatPred: A comprehensive framework for deep learning in vitro enzyme kinetic parameterskcat,KmandKi

动能 体外 化学 材料科学 热力学 物理 生物化学 经典力学
作者
Veda Sheersh Boorla,Costas D. Maranas
标识
DOI:10.1101/2024.03.10.584340
摘要

Abstract Quantification of enzymatic activities still heavily relies on experimental assays, which can be expensive and time-consuming. Therefore, methods that enable accurate predictions of enzyme activity can serve as effective digital twins. A few recent studies have shown the possibility of training machine learning (ML) models for predicting the enzyme turnover numbers ( k cat ) and Michaelis constants ( K m ) using only features derived from enzyme sequences and substrate chemical topologies by training on in vitro measurements. However, several challenges remain such as lack of standardized training datasets, evaluation of predictive performance on out-of-distribution examples, and model uncertainty quantification. Here, we introduce CatPred, a comprehensive framework for ML prediction of in vitro enzyme kinetics. We explored different learning architectures and feature representations for enzymes including those utilizing pretrained protein language model features and pretrained three-dimensional structural features. We systematically evaluate the performance of trained models for predicting k cat , K m , and inhibition constants ( K i ) of enzymatic reactions on held-out test sets with a special emphasis on out-of-distribution test samples (corresponding to enzyme sequences dissimilar from those encountered during training). CatPred assumes a probabilistic regression approach offering query-specific standard deviation and mean value predictions. Results on unseen data confirm that accuracy in enzyme parameter predictions made by CatPred positively correlate with lower predicted variances. Incorporating pre-trained language model features is found to be enabling for achieving robust performance on out-of-distribution samples. Test evaluations on both held-out and out-of-distribution test datasets confirm that CatPred performs at least competitively with existing methods while simultaneously offering robust uncertainty quantification. CatPred offers wider scope and larger data coverage (∼23k, 41k, 12k data-points respectively for k cat , K m and K i ). A web-resource to use the trained models is made available at: https://tiny.cc/catpred

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kenti2023完成签到 ,获得积分10
刚刚
Iris完成签到 ,获得积分10
刚刚
隐形曼青应助midokaori采纳,获得10
2秒前
3秒前
jacob258完成签到 ,获得积分10
3秒前
戈屿完成签到 ,获得积分10
3秒前
4秒前
4秒前
沐颜完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
zz包子完成签到,获得积分10
5秒前
7秒前
顾矜应助xueshanfeihu采纳,获得30
7秒前
达八八八完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
山复尔尔完成签到 ,获得积分10
9秒前
Nancy完成签到,获得积分10
9秒前
10秒前
midokaori完成签到,获得积分10
11秒前
12秒前
ESLG发布了新的文献求助10
12秒前
littlechu发布了新的文献求助30
13秒前
rudjs发布了新的文献求助30
13秒前
midokaori发布了新的文献求助10
14秒前
fyjlfy完成签到 ,获得积分10
15秒前
简单的沛蓝完成签到 ,获得积分10
16秒前
恋雅颖月完成签到 ,获得积分10
17秒前
lingjunjie完成签到 ,获得积分10
18秒前
19秒前
杨雪妮完成签到,获得积分20
19秒前
Demi_Ming完成签到,获得积分10
19秒前
璨澄完成签到 ,获得积分0
19秒前
希望天下0贩的0应助rudjs采纳,获得10
19秒前
千寻完成签到,获得积分10
21秒前
23秒前
xueshanfeihu发布了新的文献求助30
24秒前
xingxing完成签到 ,获得积分10
24秒前
大宝哥哥完成签到 ,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956932
求助须知:如何正确求助?哪些是违规求助? 3502968
关于积分的说明 11110867
捐赠科研通 3233954
什么是DOI,文献DOI怎么找? 1787676
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802223