CatPred: A comprehensive framework for deep learning in vitro enzyme kinetic parameterskcat,KmandKi

动能 体外 化学 材料科学 热力学 物理 生物化学 经典力学
作者
Veda Sheersh Boorla,Costas D. Maranas
标识
DOI:10.1101/2024.03.10.584340
摘要

Abstract Quantification of enzymatic activities still heavily relies on experimental assays, which can be expensive and time-consuming. Therefore, methods that enable accurate predictions of enzyme activity can serve as effective digital twins. A few recent studies have shown the possibility of training machine learning (ML) models for predicting the enzyme turnover numbers ( k cat ) and Michaelis constants ( K m ) using only features derived from enzyme sequences and substrate chemical topologies by training on in vitro measurements. However, several challenges remain such as lack of standardized training datasets, evaluation of predictive performance on out-of-distribution examples, and model uncertainty quantification. Here, we introduce CatPred, a comprehensive framework for ML prediction of in vitro enzyme kinetics. We explored different learning architectures and feature representations for enzymes including those utilizing pretrained protein language model features and pretrained three-dimensional structural features. We systematically evaluate the performance of trained models for predicting k cat , K m , and inhibition constants ( K i ) of enzymatic reactions on held-out test sets with a special emphasis on out-of-distribution test samples (corresponding to enzyme sequences dissimilar from those encountered during training). CatPred assumes a probabilistic regression approach offering query-specific standard deviation and mean value predictions. Results on unseen data confirm that accuracy in enzyme parameter predictions made by CatPred positively correlate with lower predicted variances. Incorporating pre-trained language model features is found to be enabling for achieving robust performance on out-of-distribution samples. Test evaluations on both held-out and out-of-distribution test datasets confirm that CatPred performs at least competitively with existing methods while simultaneously offering robust uncertainty quantification. CatPred offers wider scope and larger data coverage (∼23k, 41k, 12k data-points respectively for k cat , K m and K i ). A web-resource to use the trained models is made available at: https://tiny.cc/catpred

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Leafff发布了新的文献求助10
1秒前
yu完成签到,获得积分10
1秒前
pace完成签到,获得积分10
2秒前
不配.应助一往之前采纳,获得20
2秒前
一二三完成签到,获得积分20
3秒前
Schroenius完成签到 ,获得积分10
3秒前
云瑾应助葛辉辉采纳,获得20
3秒前
3秒前
ailemonmint完成签到 ,获得积分10
4秒前
7秒前
bkagyin应助wangayting采纳,获得30
8秒前
8秒前
9秒前
可爱的函函应助睡不醒采纳,获得10
10秒前
11秒前
一往之前完成签到,获得积分10
11秒前
mayue发布了新的文献求助10
11秒前
12秒前
xzc发布了新的文献求助10
13秒前
狠毒的小龙虾完成签到,获得积分10
15秒前
Singularity应助斯文棒球采纳,获得10
17秒前
Heart发布了新的文献求助10
18秒前
情怀应助YCWZ采纳,获得10
19秒前
stuffmatter完成签到,获得积分0
19秒前
科研通AI2S应助Zzzz采纳,获得10
19秒前
XYF完成签到 ,获得积分10
19秒前
Singularity应助lily88采纳,获得10
20秒前
21秒前
平常的蜜粉完成签到,获得积分10
21秒前
Halo完成签到,获得积分10
23秒前
23秒前
24秒前
26秒前
今后应助Fury采纳,获得10
27秒前
若尘完成签到,获得积分10
28秒前
HarryBaturu发布了新的文献求助30
28秒前
gry发布了新的文献求助10
28秒前
克丽完成签到 ,获得积分10
29秒前
30秒前
JiaHongLiu完成签到,获得积分10
32秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137922
求助须知:如何正确求助?哪些是违规求助? 2788820
关于积分的说明 7788709
捐赠科研通 2445219
什么是DOI,文献DOI怎么找? 1300219
科研通“疑难数据库(出版商)”最低求助积分说明 625878
版权声明 601046