Modelling of selective ion partitioning between ion-exchange membranes and highly concentrated multi-ionic brines

离子键合 离子 化学 盐(化学) 吸附 离子交换 冷凝 化学物理 选择性 工作(物理) 反离子 无机化学 热力学 有机化学 吸附 物理 催化作用 生物化学
作者
Giorgio Purpura,Ewa Papiewska,Andrea Culcasi,Antonia Filingeri,Alessandro Tamburini,Maria‐Chiara Ferrari,Giorgio Micale,Andrea Cipollina
出处
期刊:Journal of Membrane Science [Elsevier]
卷期号:700: 122659-122659 被引量:5
标识
DOI:10.1016/j.memsci.2024.122659
摘要

In recent years, the growing interest in the use of Ion-exchange membranes, in the treatment of highly concentrated multi-ionic brines for the selective recovery of critical elements, has prompted the research of fundamental models capable of predicting the IEMs selectivity towards like-charged species. Prior studies have proposed ion partitioning models limited to single-salt solutions that were validated only up to moderate salt concentrations. In this work, we developed a novel multi-ionic extension of the Manning counter-ion condensation model, aiming to predict the sorption selectivity of like-charged counter-ions. Furthermore, the peNRTL model was coupled with the extended Manning to broaden its applicability range, encompassing membrane equilibrated with very highly concentrated solutions. Novel experimental ion sorption tests with single-salt and binary solutions including NaCl, KCl, MgCl2, and CaCl2 at high concentrations were performed with the commercial cation-exchange membrane Fumasep FKE-50, provided by Fumatech. To the best of Authors' knowledge, the proposed model for the first time successfully provided quantitative predictions of multi-ionic ion partitioning for all the systems investigated up to extremely high external salt concentrations. The outcomes of this work suggest a strong influence of the local non-electrostatic interactions on the activity coefficients in the membrane phase at high external concentration and highlight the key role of counter-ions hydration state in the condensation phenomenon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
koi发布了新的文献求助10
刚刚
浦肯野应助湖月照我影采纳,获得30
刚刚
刚刚
陈博士完成签到,获得积分10
1秒前
Citrus完成签到,获得积分10
2秒前
费老三发布了新的文献求助30
2秒前
华仔应助chenjyuu采纳,获得10
2秒前
2秒前
最最最发布了新的文献求助10
2秒前
2秒前
Tuesday完成签到 ,获得积分10
3秒前
3秒前
4秒前
阿毛发布了新的文献求助10
5秒前
6秒前
情怀应助灵巧荆采纳,获得10
6秒前
Ll发布了新的文献求助10
6秒前
Peter发布了新的文献求助30
7秒前
7秒前
8秒前
科研韭菜发布了新的文献求助10
8秒前
科研通AI5应助爱学习采纳,获得10
8秒前
科研通AI5应助跳跃的太阳采纳,获得10
8秒前
苏尔琳诺完成签到,获得积分10
8秒前
科研通AI5应助a1oft采纳,获得10
9秒前
9秒前
关关过完成签到,获得积分10
9秒前
呢不辣完成签到,获得积分10
9秒前
9秒前
shi hui应助陈博士采纳,获得10
9秒前
9秒前
糖糖关注了科研通微信公众号
10秒前
10秒前
小恶于完成签到 ,获得积分10
10秒前
科研通AI2S应助落晨采纳,获得10
11秒前
11秒前
12秒前
半颗橙子发布了新的文献求助10
12秒前
小可爱完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762